Program activities are funded in part by the United States Agency for International Development (USAID) under Grant No.LAG-G-00-96-90015-00 and by participating US and Host Country institutions.

Disclaimers
The contents of this document do not necessarily represent an official position or policy of the United States Agency for International Development (USAID). Mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use on the part of USAID or the Aquaculture Collaborative Research Support Program (CRSP). The accuracy, reliability, and originality of work presented in this report are the responsibility of the individual authors.

Acknowledgments
The Program Management Office of the Aquaculture CRSP gratefully acknowledges the contributions of CRSP researchers and the support provided by participating US and Host Country institutions.

Aquaculture CRSP Management Office
College of Agricultural Sciences • Oregon State University
418 Snell Hall • Corvallis, Oregon 97331-1643 • USA
The two-volume set of this publication may be cited as:
Aquaculture CRSP, Oregon State University, Corvallis, Oregon, Vol 1 & 2.

Volume 2 of this publication may be cited as:
Aquaculture CRSP, Oregon State University, Corvallis, Oregon, Vol 2, 142pp.
Table of Contents

Appendix 1. Investigations Summary & Assessment... 1
Appendix 2. Work Plans & Annual Administrative Reports: 1979 to 2008.............................. 32
Appendix 3. Research & Outreach Themes: 8th to 12th Work Plans 34
Appendix 4. Compendium of Publications .. 36
Appendix 5. Linkages .. 132
Appendix 6. Program Participants ... 137
Appendix 7. Acronyms ... 139
Aquaculture CRSP research and outreach investigations conducted under the 8th to 12th Work Plans during the period 1996 through 2008 and funded under USAID Grant LAG-G-00-96-90015-00.

<table>
<thead>
<tr>
<th>Code1</th>
<th>Study Title</th>
<th>Lead US PI</th>
<th>US Institution</th>
<th>Final Status3</th>
<th>Comment or Modification Reference4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8ADR1</td>
<td>Socioeconomic Dimensions of Aquaculture Development: Baseline Conditions, Human Capital Impacts, and Technology Diffusion Processes</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>2</td>
<td>2nd Addendum to the 8th Work Plan: new work plan for 3 studies coded 8ADR1-1, 8ADR1-2, and 8ADR1-3.</td>
</tr>
<tr>
<td>8ADR1A</td>
<td>Tilapia Producer Perceptions and Practices in Five PD/A CRSP Countries</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>2</td>
<td>Progress Report for original 8ADR1, under a revised title.</td>
</tr>
</tbody>
</table>

1 Codes identify each investigation with a unique number associated with the Work Plan and scientific theme under which the investigation was conducted. Code assignments follow a uniform format. Using the code 8ADR1 as an example: "8" refers the 8th Work Plan, "ADR" is the acronym for the "Adoption & Diffusion Research" scientific theme, and "1" is the sequential investigation number assigned within the scientific theme block. See Appendix 3 for a listing of scientific themes and their acronyms and Volume I (Introduction) for definitions. Missing numbers in the coding sequence are for investigations that were assigned a code prior to proposal review and were unsuccessful in receiving funding. In some cases, investigations were added or modified after publication of the Work Plan. For these investigations, work plan details are available in the subcontract or MoU.

2 The Lead US PI may or may not have been listed as the first author on the reports submitted for the investigation.

3 1 = Successfully Completed; 2 = Successfully Completed in Part or with Modification; 3 = Suspended

4 Addenda are cited when an investigation work plan was revised or a new investigation was introduced. Subcontracts or MoUs are noted when either revised or new investigation work plans were developed after publication of the Work Plan or its addenda.

AAR = Annual Administrative Report covering administrative reporting on the projects; ATR = Annual Technical Report presenting detailed summaries of investigation goals, methodologies, findings, and benefits. The ten-year report series covering volumes 16 to 25 includes a separate AAR and ATR for each year, e.g., 16AAR and 16ATR for the period 1 August 1997 to 31 July 1998. For volume 20, only an AAR was published.
<table>
<thead>
<tr>
<th>Code</th>
<th>Study Title</th>
<th>Lead US PI</th>
<th>US Institution</th>
<th>Final Status</th>
<th>Comment or Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8ADR1-2</td>
<td>Sources of Technical Assistance for Fish Farmers in the Peruvian Amazon</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>2</td>
<td>See 8ADR1. Revised title</td>
</tr>
<tr>
<td>8ADR1-3</td>
<td>Identifying Goals and Priorities of Fish Farmers in the Peruvian Amazon</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>2</td>
<td>See 8ADR1. Revised title</td>
</tr>
<tr>
<td>8ADR2</td>
<td>The Influence of Fish Culture Technology, Extension Methodology, and Socioeconomics on Success of Fish Culture on Limited-Resource Farms</td>
<td>Lovshin</td>
<td>Auburn University</td>
<td>2</td>
<td>2nd Addendum to the 8th Work Plan. Final Technical Report under new title: "Impacts of Integrated fish Culture on Resource-Limited Farms in Guatemala and Panama: An Ex-post Evaluation".</td>
</tr>
<tr>
<td>8ASMR1</td>
<td>Aquaculture Systems Modeling for the Analysis of Environmental Impacts and Integration with Agriculture</td>
<td>Piedrahita</td>
<td>University of California</td>
<td>1</td>
<td>2 separate studies: 8ASMR1A and 8ASMR1B.</td>
</tr>
<tr>
<td>8ASMR1A</td>
<td>Aquaculture Systems Modeling for the Analysis of Environmental Impacts and Integration with Agriculture: Relationship between Carbon Input and Sediment Quality in Aquaculture Ponds</td>
<td>Piedrahita</td>
<td>University of California</td>
<td>2</td>
<td>2nd Addendum to the 8th Work Plan</td>
</tr>
<tr>
<td>8ASMR1B</td>
<td>Aquaculture Systems Modeling for the Analysis of Environmental Impacts and Integration with Agriculture: Stochastic Modeling of Temperature, Dissolved Oxygen and Fish Growth Rate in Aquaculture Ponds</td>
<td>Piedrahita</td>
<td>University of California</td>
<td>2</td>
<td>2nd Addendum to the 8th Work Plan</td>
</tr>
<tr>
<td>8DM1</td>
<td>PD / A CRSP Central Database Management and Development</td>
<td>Bolte</td>
<td>Oregon State University</td>
<td>1</td>
<td>Work plan in MoU.</td>
</tr>
<tr>
<td>8DSSR1</td>
<td>Decision Support for Aquaculture Systems</td>
<td>Bolte</td>
<td>Oregon State University</td>
<td>1</td>
<td>Work plan with 4 parts in MoU.</td>
</tr>
<tr>
<td>Code¹</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status²</td>
<td>Comment or Modification Reference⁴</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------------</td>
<td>-------------------------</td>
<td>---------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>8DSSR1A</td>
<td>Decision Support for Aquaculture Systems: A Pond Sediment-Water Column Model for Phosphorus Cycling</td>
<td>Bolte</td>
<td>Oregon State University</td>
<td>2</td>
<td>Grouped with 8DSSR1B and 8DSSR1D; reported in 15ATR under title: "Advances in the POND© Software: Wizard Development and Model Refinements". Grouped with 8DSSR1B & 8DSSR1C and reported in 16ATR under title: "POND© Software Development and Refinement"</td>
</tr>
<tr>
<td>8DSSR1B</td>
<td>Decision Support for Aquaculture Systems: Models for Heterotrophic Dynamics and Polyculture Species Interactions in Ponds</td>
<td>Bolte</td>
<td>Oregon State University</td>
<td>2</td>
<td>See 8DSSR1A</td>
</tr>
<tr>
<td>8DSSR1D</td>
<td>Decision Support for Aquaculture Systems: Macro-Level Agroecological Systems Analysis and Socioeconomics of Pond Aquaculture</td>
<td>Bolte</td>
<td>Oregon State University</td>
<td>2</td>
<td>See 8DSSR1A</td>
</tr>
<tr>
<td>8FFR1</td>
<td>Global Experiment: Optimization of Nitrogen Fertilization Rate in Freshwater Tilapia Production Ponds</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>1st, 2nd, and 3rd Addenda to the 8th Work Plan: split into 4 investigations by country.</td>
</tr>
<tr>
<td>8FFR1H</td>
<td>Global Experiment: Optimization of Nitrogen Fertilization Rate in Freshwater Tilapia Production Ponds (Honduras Research)</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan</td>
</tr>
<tr>
<td>8FFR1K</td>
<td>Global Experiment: Optimization of Nitrogen Fertilization Rate in Freshwater Tilapia Production Ponds (Kenya Research)</td>
<td>Veverica</td>
<td>Auburn University</td>
<td>2</td>
<td>1st and 2nd Addenda to the 8th Work Plan</td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-------------</td>
<td>---</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>8FFR1Ph</td>
<td>Global Experiment: Optimization of Nitrogen Fertilization Rate in Freshwater Tilapia Production Ponds (Philippines Research)</td>
<td>Brown</td>
<td>Florida International University</td>
<td>2</td>
<td>2nd and 3rd Addenda to the 8th Work Plan</td>
</tr>
<tr>
<td>8FFRIT</td>
<td>Global Experiment: Optimization of Nitrogen Fertilization Rate in Freshwater Tilapia Production Ponds (Thailand Research)</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>2nd Addendum to the 8th Work Plan.</td>
</tr>
<tr>
<td>8HCD1</td>
<td>Annual Activities of the Education Development Component</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td>Work plan in MoU with 12 activities: 8HCD1A to 8HCD1L.</td>
</tr>
<tr>
<td>8HCD1A</td>
<td>Annual Activities of the Education Development Component: Establish an Education Advisory Panel in Each Country in which the CRSP Works</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8HCD1B</td>
<td>Annual Activities of the Education Development Component: Create a CRSP Fellowship Program to Provide Appropriate Support for Graduate-Level Students at Each CRSP Host Country Site</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>2</td>
<td>Progress Report in 17AAR. Fellowship award research continued as 9ERA4.</td>
</tr>
<tr>
<td>8HCD1C</td>
<td>Annual Activities of the Education Development Component: Identify Educational Opportunities Offered by Governments, Foundations, Other Donors</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8HCD1D</td>
<td>Annual Activities of the Education Development Component: Coordinate Evaluation of CRSP-Sponsored Short Courses and Workshops</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8HCD1E</td>
<td>Annual Activities of the Education Development Component: Serve as the CRSP Link to the Planning Committee for ISTA IV</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>8HCD1F</td>
<td>Annual Activities of the Education Development Component: Maintain and Improve the Database of CRSP Education and Training Alumni</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8HCD1G</td>
<td>Annual Activities of the Education Development Component: Provide Travel Support for Station Managers from CRSP Host Countries to Attend a Training Workshop in the U.S.</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8HCD1H</td>
<td>Annual Activities of the Education Development Component: Create and Maintain a Web Page Linked to the PD / A CRSP Page</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8HCD1I</td>
<td>Annual Activities of the Education Development Component: Establish a Library of Information on CRSP Institutions</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8HCD1J</td>
<td>Annual Activities of the Education Development Component: Seek External Support for Additional Activities of Follow-on ISTA IV</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8HCD1K</td>
<td>Annual Activities of the Education Development Component: Work with Institutions in CRSP Host Countries to Seek Additional Scholarship Funding from Government Agencies, Foundations, and the Private Sector to Support Masters and Doctoral Students</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8HCD1L</td>
<td>Annual Activities of the Education Development Component: Seek External Support for a Station Manager Workshop to Be Held in the U.S.</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------------</td>
<td>---</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>8HR1</td>
<td>Intensification of Tilapia Production: Effects of Feeding at Different Stocking Rate on Pond Water Quality</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>1st and 2nd Addenda to the 8th Work Plan</td>
</tr>
<tr>
<td>8HR2</td>
<td>Estuarine Water Quality Monitoring and Estuarine Carrying Capacity</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan. Final Technical Report split into 2 parts by objectives.</td>
</tr>
<tr>
<td>8HR2-1</td>
<td>Estuarine Water Quality Monitoring and Estuarine Carrying Capacity</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan. Objective 1 in Final Technical Report.</td>
</tr>
<tr>
<td>8HR2-2</td>
<td>Evaluation of Shrimp Farming Impacts in Golfo de Fonseca Region, Honduras</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan. Objective 2 in Final Technical Report.</td>
</tr>
<tr>
<td>8HR3</td>
<td>Influence of Daily Water Exchange Volume on Water Quality and Shrimp Production</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan</td>
</tr>
<tr>
<td>8HR4</td>
<td>Water Exchange to Rectify Low Dissolved Oxygen</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>1st and 2nd Addenda to the 8th Work Plan</td>
</tr>
<tr>
<td>8IMNC1</td>
<td>Report: Annual Activities of the Information Management and Networking Component</td>
<td>Clair</td>
<td>Oregon State University</td>
<td>1</td>
<td>Work plan in MoU.</td>
</tr>
<tr>
<td>8KR1</td>
<td>New Site Development and Characterization</td>
<td>Veverica</td>
<td>Auburn University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan</td>
</tr>
<tr>
<td>8KR2</td>
<td>Strain Variations in Sex Ratio Inheritance</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>3</td>
<td>1st and 2nd Addenda to the 8th Work Plan. Tilapia strains found to be contaminated. Cancelled.</td>
</tr>
<tr>
<td>8KR3</td>
<td>Relative Contribution of Supplemental Feed and Inorganic Fertilizers in Semi-Intensive Tilapia Production</td>
<td>Veverica</td>
<td>Auburn University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan.</td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>8KR4</td>
<td>Training</td>
<td>Veverica</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8KR5</td>
<td>Regional Outreach in Africa</td>
<td>Langdon</td>
<td>Oregon State University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan.</td>
</tr>
<tr>
<td>8MEAR1</td>
<td>Economic and Social Returns to Technology and Investment</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>2</td>
<td>2nd and 3rd Addenda to the 8th Work Plan. Combined with 8MEAR2 in the Final Technical Report.</td>
</tr>
<tr>
<td>8MEAR2</td>
<td>Risk Analysis of Pond Management Strategies</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>2</td>
<td>2nd and 3rd Addenda to the 8th Work Plan. See 8MEAR1.</td>
</tr>
<tr>
<td>8PDR1</td>
<td>Pond Soil Characteristics and Dynamics of Soil Organic Matter and Nutrients</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan.</td>
</tr>
<tr>
<td>8PHR1</td>
<td>Development of Low Cost Supplemental Feeds for Tilapia in Pond and Cage Culture</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td>Progress Report in 16ATR satisfied final report requirements.</td>
</tr>
<tr>
<td>8PR1</td>
<td>Development of Sustainable Pond Aquaculture Practices for Colossoma macropomum and / or Piaractus spp. in the Peruvian Amazon</td>
<td>Kohler</td>
<td>Southern Illinois University at Carbondale</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan.</td>
</tr>
<tr>
<td>8PR2</td>
<td>New Site Development and Characterization—Peru</td>
<td>Kohler</td>
<td>Southern Illinois University at Carbondale</td>
<td>1</td>
<td>2nd Addendum to the 8th Work Plan.</td>
</tr>
<tr>
<td>8RCR1</td>
<td>Monosex Tilapia Production through Androgenesis</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>1</td>
<td>Split into 4 investigations.</td>
</tr>
<tr>
<td>8RCR1A</td>
<td>Monosex Tilapia Production through Androgenesis: Methods for Strain Variations in Sex Ratio Inheritance</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>2</td>
<td>1st and 3rd Addenda to the 8th Work Plan; Progress Report in 16ATR. See 8RCR1D.</td>
</tr>
<tr>
<td>8RCR1B</td>
<td>Monosex Tilapia Production through Androgenesis: Methods for Androgenesis Techniques Applicable to</td>
<td>Shelton</td>
<td>University of Oklahoma</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan.</td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>8RCR1C</td>
<td>Monosex Tilapia Production through Androgenesis: Methods for Contribution from the Male and Female Genome to Sex Inheritance</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>2</td>
<td>1st and 3rd Addenda to the 8th Work Plan.</td>
</tr>
<tr>
<td>8RCR1D</td>
<td>Monosex Tilapia Production through Androgenesis: Methods for Development of YY Lines of Males and Female O. niloticus</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>3</td>
<td>1st and 3rd Addenda to the 8th Work Plan. No strain evaluated in 8RCR1A had a high enough percentage of spawns conforming to a 50:50 sex ratio to justify its use in 8RCR1D. Cancelled.</td>
</tr>
<tr>
<td>8RCR2</td>
<td>Steroid Immersion for Masculinization of Tilapia</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td>Split into 3 investigations.</td>
</tr>
<tr>
<td>8RCR2A</td>
<td>Steroid Immersion for Masculinization of Tilapia: Immersion of Tilapia Fry in MDHT</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan</td>
</tr>
<tr>
<td>8RCR2B</td>
<td>Steroid Immersion for Masculinization of Tilapia: Effect of Fish Density on Efficacy of Masculinization by Immersion in MDHT</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan</td>
</tr>
<tr>
<td>8RCR2C</td>
<td>Steroid Immersion for Masculinization of Tilapia: Masculinization of Tilapia Fry by Immersion in MDHT at a Production Level</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8RCR3</td>
<td>Detection of Masculinizing Agents in the Pond Environment</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td>Split into 2 investigations.</td>
</tr>
<tr>
<td>8RCR3A</td>
<td>Detection of Masculinizing Agents in the Pond Environment: Detection of MT in Aquarium Water after Treatment with MT Food</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan</td>
</tr>
<tr>
<td>8RCR3B</td>
<td>Detection of Masculinizing Agents in the Pond Environment: Detection of MT in Pond Water after Treatment with MT Food</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>2</td>
<td>2nd Addendum to the 8th Work Plan.</td>
</tr>
<tr>
<td>8TR1</td>
<td>Effects of Mud Turbidity on Fertilization, and an Analysis of Techniques to Mitigate Turbidity Problems</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan</td>
</tr>
</tbody>
</table>
APPENDIX 1. INVESTIGATION SUMMARY & ASSESSMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Study Title</th>
<th>Lead US PI</th>
<th>US Institution</th>
<th>Final Status</th>
<th>Comment or Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>8TR2</td>
<td>Management of Organic Matter and Nutrient Regeneration in Pond Bottoms Thailand</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan</td>
</tr>
<tr>
<td>8TR3</td>
<td>Management to Minimize the Environmental Impacts of Pond Draining</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>1st Addendum to the 8th Work Plan; revised title for Final Technical Report.</td>
</tr>
<tr>
<td>8TR4</td>
<td>Technical Transfer from On-Station Research to Producers</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td>Final Technical Report submitted under the title: “High-Input Green Water On-Farm Trials in Northeast Thailand”.</td>
</tr>
</tbody>
</table>

9th Work Plan

<table>
<thead>
<tr>
<th>Code</th>
<th>Study Title</th>
<th>Lead US PI</th>
<th>US Institution</th>
<th>Final Status</th>
<th>Comment or Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>9ADR3</td>
<td>Aquaculture Training for Kenyan Fisheries officers and University Students</td>
<td>Veverica</td>
<td>Auburn University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan. Errorneously listed as 10ADR1 in the Table of Contents for 21 ATR.</td>
</tr>
<tr>
<td>9ADR4</td>
<td>Establishment of Companion Sites in the Africa Region</td>
<td>Langdon</td>
<td>Oregon State University</td>
<td>2</td>
<td>MoU added supplementary investigations.</td>
</tr>
<tr>
<td>9ADR5</td>
<td>Regional Outreach in Africa</td>
<td>Veverica</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9ADR6</td>
<td>Workshops and Production of Improved Extension Materials</td>
<td>Brown</td>
<td>Florida International University</td>
<td>2</td>
<td>No Report. See 9ADR6B.</td>
</tr>
<tr>
<td>9ADR6A</td>
<td>Workshops and Production of Improved Extension Materials</td>
<td>Brown</td>
<td>Florida International University</td>
<td>1</td>
<td>Final Report for workshop built on 9FFR4.</td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>9ADR6B</td>
<td>Production of Improved Extension Materials</td>
<td>Brown</td>
<td>Florida International University</td>
<td>1</td>
<td>Addendum to the 9th Work Plan. Replaced Objective 2 of 9ADR6.</td>
</tr>
<tr>
<td>9ADR7</td>
<td>Decision Support for Policy Development: Planning Conferences for Collaborating Researchers, Public Agencies, and Nongovernmental Organizations Working in Aquaculture</td>
<td>Verma</td>
<td>University of Georgia</td>
<td>1</td>
<td>Addendum to the 9th Work Plan.</td>
</tr>
<tr>
<td>9ADR8</td>
<td>Production Strategies Characterizing Small- and Medium-Scale Tilapia Farms: Approaches, Barriers, and Needs</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>1</td>
<td>Addendum to the 9th Work Plan.</td>
</tr>
<tr>
<td>9ADR9</td>
<td>Technical Assistance for Fingerling Production Serving Small- and Medium-Scale Tilapia Producers</td>
<td>Popma</td>
<td>Auburn University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan. See 9ADR10.</td>
</tr>
<tr>
<td>9ASMR2</td>
<td>Model for Determining Aquaculture Pond Water Quality and Effluent Characteristics</td>
<td>Piedrahita</td>
<td>University of California, Davis</td>
<td>3</td>
<td>Addendum to the 9th Work Plan; the Principal Investigator declined funding during final subcontract negotiations. Cancelled.</td>
</tr>
<tr>
<td>9ATR1</td>
<td>On-Farm Trials: Evaluation of Alternative Aquaculture Technologies by Local Farmers in Kenya</td>
<td>Veverica</td>
<td>Auburn University</td>
<td>1</td>
<td>Addendum to the 9th Work Plan</td>
</tr>
<tr>
<td>9ATR2</td>
<td>Linkages of Aquaculture within Watersheds and Concurrent Design of Hillside Ponds</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td>Addendum to the 9th Work Plan</td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>9DM2</td>
<td>PD/A CRSP Central Database: Development and Management</td>
<td>Bolte</td>
<td>Oregon State University</td>
<td>1</td>
<td>Addendum to the 9th Work Plan. Final Report in 19AAR.</td>
</tr>
<tr>
<td>9DSSR2</td>
<td>Decision Support Systems for Fish Population Management and Scheduling in Commercial Pond Aquaculture Operations</td>
<td>Bolte</td>
<td>Oregon State University</td>
<td>1</td>
<td>Addendum to the 9th Work Plan; see CRSP website for Decision Support Systems.</td>
</tr>
<tr>
<td>9DSSR3</td>
<td>Enhancing the POND© Decision Support System for Economics, Education, and Extension</td>
<td>Bolte</td>
<td>Oregon State University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan</td>
</tr>
<tr>
<td>9ER1</td>
<td>Use of Pond Effluents for Irrigation in an Integrated Crop/Aquaculture System</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan</td>
</tr>
<tr>
<td>9ER2</td>
<td>Fate of Methyltestosterone in the Pond Environment</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td>Split into 3 investigations.</td>
</tr>
<tr>
<td>9ER2A</td>
<td>Fate of Methyltestosterone in the Pond Environment: Detection of MT in Soil after Treatment with MT Food</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>2</td>
<td>Revised title.</td>
</tr>
<tr>
<td>9ER2B</td>
<td>Fate of Methyltestosterone in the Pond Environment: Detection of MT in Pond Soil from a CRSP Site</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan</td>
</tr>
<tr>
<td>9ER2C</td>
<td>Fate of Methyltestosterone in the Pond Environment: Impact of MT-Contaminated Soil on Tilapia Sex Differentiation</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>2</td>
<td>Revised title.</td>
</tr>
<tr>
<td>9ER2D</td>
<td>Fate of Methyltestosterone in the Pond Environment: Use of MT in Earthen Ponds with No Record of Hormone Usage</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td>Investigation added by MoU.</td>
</tr>
<tr>
<td>9ER3</td>
<td>Integrated Recycle Systems for Catfish and Tilapia Culture</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Addendum to the 9th Work Plan. Original work plan replaced.</td>
</tr>
<tr>
<td>9ER4</td>
<td>Effects of Water Recycling on Water Quality and Bottom Soils in Shrimp Ponds</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>1</td>
<td>Addendum to the 9th Work Plan. Replaced 8HCD1B.</td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------------</td>
<td>--</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>9FFR2A</td>
<td>Fish Yields and Economic Benefits of Tilapia/Clarias Polyculture in Fertilized Ponds Receiving Commercial Feeds or Pelleted Agricultural By-Products</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>1</td>
<td>Addendum to the 9th Work Plan. Final Technical Report for Objective 2 of original 9FFR2 with original title.</td>
</tr>
<tr>
<td>9FFR3</td>
<td>Reduction of Rations below Satiation Levels</td>
<td>Brown</td>
<td>Florida International University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan</td>
</tr>
<tr>
<td>9FFR4</td>
<td>Timing of the Onset of Supplemental Feeding</td>
<td>Brown</td>
<td>Florida International University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan</td>
</tr>
<tr>
<td>9FFR6</td>
<td>Development of Training Modules for Aquaculture Extension Workers and University Students in Kenya</td>
<td>Bowman</td>
<td>Oregon State University</td>
<td>1</td>
<td>Work plan in MoU.</td>
</tr>
<tr>
<td>9HCD2</td>
<td>Building Research Capacity in CRSP Host Countries</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>3</td>
<td>Addendum to the 9th Work Plan. The Principal Investigator declined funding. Cancelled.</td>
</tr>
<tr>
<td>9HCD3</td>
<td>Institutionalizing EDC Activities in CRSP Countries</td>
<td>McNamara</td>
<td>Oregon State University</td>
<td>3</td>
<td>Addendum to the 9th Work Plan. The Principal Investigator declined funding. Cancelled.</td>
</tr>
<tr>
<td>9IMNC2</td>
<td>Report: annual Activities of the Information Management and Networking Component</td>
<td>Clair</td>
<td>Oregon State University</td>
<td>1</td>
<td>Work plan in MoU. Reported in 17AAR and 18AAR.</td>
</tr>
<tr>
<td>9IMNC3</td>
<td>Report: annual Activities of the Information Management and Networking Component</td>
<td>Clair</td>
<td>Oregon State University</td>
<td>1</td>
<td>Work plan in MoU. Reported in 19AAR.</td>
</tr>
<tr>
<td>9MEAR3</td>
<td>Development of Central American Markets for Tilapia Produced in the Region</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code^1</td>
<td>Study Title</td>
<td>Lead US PI^2</td>
<td>US Institution</td>
<td>Final Status^3</td>
<td>Comment or Modification Reference^4</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>--------------</td>
<td>---</td>
<td>----------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>9MEAR4</td>
<td>Economic and Social Returns to Technology and Investment in Thailand</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9MEAR5</td>
<td>Rapid Economic Evaluation Tools</td>
<td>Popma</td>
<td>Auburn University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan.</td>
</tr>
<tr>
<td>9NS1</td>
<td>Lotus-Fish Culture in Ponds: Recycling of Pond Mud Nutrients</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Addendum to the 9th Work Plan; Work Plan and title replaced.</td>
</tr>
<tr>
<td>9NS2</td>
<td>Culture of Mixed-Sex Nile Tilapia with Predatory Snakehead</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Addendum to the 9th Work Plan</td>
</tr>
<tr>
<td>9NS3A</td>
<td>Spawning and Grow-Out of Colossoma macropomum and/or Piaractus brachypomus</td>
<td>Kohler</td>
<td>Southern Illinois University at Carbondale</td>
<td>2</td>
<td>Addendum to the 9th Work Plan; Objective 1 of 9NS3. Reported under title: "Practical Diet Development for Broodstock of Colossoma macropomum and *Piaractus brachypomus"</td>
</tr>
<tr>
<td>9NS4</td>
<td>Semi-Intensive Culture of Red Tilapia in Brackishwater Ponds</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td>Addendum to the 9th Work Plan.</td>
</tr>
<tr>
<td>9PDR2</td>
<td>Pond Soil Characteristics and Dynamics of Soil Organic Matter and Nutrients</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan.</td>
</tr>
<tr>
<td>9RA1</td>
<td>Establishment of New Collaboration in Bangladesh</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td>Work plan in subcontract.</td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>9RCR5</td>
<td>Masculinization of Tilapia by Immersion in Trenbolone Acetate</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td>Split into 3 studies.</td>
</tr>
<tr>
<td>9RCR5A</td>
<td>Masculinization of Tilapia by Immersion in Trenbolone Acetate: Effect of treatment timing and dose on masculinization with trenbolone acetate</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9RCR5B</td>
<td>Masculinization of Tilapia by Immersion in Trenbolone Acetate: Growth performance of trenbolone acetate-immersed tilapia</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan.</td>
</tr>
<tr>
<td>9RCR5C</td>
<td>Masculinization of Tilapia by Immersion in Trenbolone Acetate: Detection of trenbolone acetate in water after treatment</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan.</td>
</tr>
<tr>
<td>9RCR5D</td>
<td>Masculinization of Nile Tilapia Fry by Immersion in Trenbolone Acetate: Use of Hormone Solution and Effects of Temperature</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td>Investigation added by MoU.</td>
</tr>
<tr>
<td>9RCR6</td>
<td>Selection of Individuals for Sex Inheritance Characteristics for Use in Monosex Production</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>2</td>
<td>Addendum to the 9th Work Plan.</td>
</tr>
<tr>
<td>9RCR6A</td>
<td>Monosex Tilapia Production through Androgenesis: Selection of Individuals for Sex Inheritance Characteristics for Use in Monosex Production</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>2</td>
<td>Final Report on 9RCR6; revised title.</td>
</tr>
<tr>
<td>9RCR6B</td>
<td>Monosex Tilapia Production through Androgenesis: Verification of Androgenically Produced Males, Their Viability, and the Influence of the Female on Progeny Sex Ratios</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>3</td>
<td>Cancelled. See 9RCR6.</td>
</tr>
<tr>
<td>9RCR6C</td>
<td>Monosex Tilapia Production through Androgenesis: Growth of Genetically Derived Males in Production Settings</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>3</td>
<td>Cancelled. See 9RCR6.</td>
</tr>
<tr>
<td>9RCR7</td>
<td>Monosex Tilapia Production through Androgenesis</td>
<td>Shelton</td>
<td>University of Oklahoma</td>
<td>3</td>
<td>Addendum to the 9th Work Plan; no androgenotes reached maturity thereby preventing verification of sex ratios. Cancelled. Progress Report in 19ATR.</td>
</tr>
</tbody>
</table>
Appendix 1. Investigation Summary & Assessment

<table>
<thead>
<tr>
<th>Code</th>
<th>Study Title</th>
<th>Lead US PI</th>
<th>US Institution</th>
<th>Final Status</th>
<th>Comment or Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>9RCR8</td>
<td>The Application of Ultrasound to Produce All-Male Tilapia Using Immersion Protocol</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td>Addendum to the 9th Work Plan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10th Work Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10ADR1</td>
<td>Institutionalizing Techniques for Building Hillside and Levee Fonds for Water Supply and Aquacultural Development in Latin America</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10ASMR1</td>
<td>Development of a Trophic Box Model to Assess Potential of Ecologically Sound Management for Cove Aquaculture Systems in Tri An Reservoir, Vietnam</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10ATR1</td>
<td>Regionalizing Training and Technical Assistance for Nongovernmental Organizations</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10ATR2</td>
<td>Institutionalizing Web-based Information System for Tilapia Culture in Latin America</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10ATR3</td>
<td>Diversification of Aquacultural Practices by Incorporation of Native Species and Implementation of Alternative Sex Inversion Techniques</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10ATR4</td>
<td>On-Station and On-Farm Trials of Different Fertilization Regimes Used in Bangladesh</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Split into 2 investigations. See 10ATR4A and 10ATR4B</td>
</tr>
<tr>
<td>10ATR4A</td>
<td>On-Station and On-Farm Trials of Different Fertilization Regimes Used in Bangladesh</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td>See 10ATR4.</td>
</tr>
<tr>
<td>10ATR4B</td>
<td>On-Farm Trials of Different Fertilization Regimes Used in Bangladesh</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Revised title. See 10ATR4.</td>
</tr>
<tr>
<td>10ATR5</td>
<td>Use of Clinoptilolite Zeolites for Ammonia-N Transfer and Retention in Integrated Aquaculture Systems and for Improving Pond Water Quality before Discharge</td>
<td>Batterson</td>
<td>Michigan State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10DSSR1</td>
<td>Aquaculture CRSP Database: Finalization, Management, and Distribution</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td>Work plan in subcontract.</td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>10ER1</td>
<td>Reaction of Liming Materials in Pond Bottom Soils</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10ER2</td>
<td>Elimination of Methyltestosterone (MT) from Intensive Masculinization Systems: Use of Activated Charcoal in Concrete Tanks</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10FFR1</td>
<td>Nutrition of Colossoma macropomum and Piaractus brachypomus</td>
<td>Kohler</td>
<td>Southern Illinois University at Carbondale</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10FFR2</td>
<td>Broodstock Diets and Spawning of Colossoma macropomum and/or Piaractus brachypomus</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10FFR2A</td>
<td>Broodstock Diets and Spawning of Colossoma macropomum and/or Piaractus brachypomus</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10FFR3</td>
<td>Polyculture of Grass Carp and Nile Tilapia with Napier Grass as the Sole Nutrient Input in the Subtropical Climate of Nepal</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10FFR4</td>
<td>Development of Economically Feasible Feeds for Semi-Intensive Culture of Tilapia, Oreochromis niloticus, Using Locally Available Agricultural By-Products</td>
<td>Lim & Phelps</td>
<td>Auburn University</td>
<td>2</td>
<td>Investigation split into two studies with revised titles.</td>
</tr>
<tr>
<td>10FFR4A</td>
<td>Development and Evaluation of the Nutritive and Economic Potential of Formulated Fish Feeds and Comparison with Locally Available Feeds for Semi-Intensive Production of Nile Tilapia (Oreochromis niloticus)</td>
<td>Lim & Phelps</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10FFR4B</td>
<td>Effect of Feeding Duration of Sodium Chloride Containing Diets on Growth Performance and Some Osmoregulatory Parameters of Nile Tilapia (Oreochromis niloticus) After Transfer to Water of Different Salinities</td>
<td>Lim & Phelps</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>10FSR1</td>
<td>Income, Food Security, and Poverty Reduction: Case Studies of Functioning Clusters of Successful Small-Scale Aquaculture Producers</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10GISR1</td>
<td>A Study of Aquaculture Brownfields: Abandoned and Converted Shrimp Ponds in Thailand</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10GISR2</td>
<td>Assessing Watershed Ponds for Aquaculture Development in Thai Nguyen, Vietnam</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10MEAR1</td>
<td>Optimal (Profit-Maximizing) Target Markets for Small and Medium-Scale Tilapia Farmers in Honduras and Nicaragua</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>2</td>
<td>Split into 2 studies.</td>
</tr>
<tr>
<td>10MEAR1A</td>
<td>A Mixed-Integer Transshipment Model for Tilapia (Oreochromis sp.) Marketing in Honduras</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>2</td>
<td>Revised title.</td>
</tr>
<tr>
<td>10MEAR1B</td>
<td>A Mixed-Integer Transshipment Model for Tilapia (Oreochromis sp.) Marketing Strategies in Nicaragua</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>2</td>
<td>Revised title.</td>
</tr>
<tr>
<td>10MEAR2</td>
<td>Development and Evaluation of a Simple Market Feasibility Assessment Methodology</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10MEAR3</td>
<td>Regional Enterprise Budget and Business Plan Development</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>2</td>
<td>The ACRSP publication Tilapia Farm Business Management and Economics Manual was accepted in lieu of the Final Technical Report.</td>
</tr>
<tr>
<td>10MEAR4</td>
<td>Economic and Risk Analysis of Tilapia Production in Kenya</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10NSR1</td>
<td>Amazon Aquaculture Outreach</td>
<td>Kohler</td>
<td>Southern Illinois University at Carbondale</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>10NSR2A</td>
<td>Studies on Reproduction and Larval Rearing of Amazonian Fish</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>2</td>
<td>See 10NSR2.</td>
</tr>
<tr>
<td>10NSR3</td>
<td>Survey Study of and Stocking Densities for Tilapia-Shrimp Polycultures</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td>Split into 5 investigations.</td>
</tr>
<tr>
<td>10NSR3A</td>
<td>Survey Study of and Stocking Densities for Tilapia-Shrimp Polycultures: Survey of Tilapia-Shrimp Polycultures in Vietnam and Thailand</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10NSR3B</td>
<td>Survey Study of and Stocking Densities for Tilapia-Shrimp Polycultures: Stocking Densities for Tilapia-Shrimp Polyculture in Thailand</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10NSR3C</td>
<td>Survey Study of and Stocking Densities for Tilapia-Shrimp Polycultures: Survey of Tilapia-Shrimp Polycultures in Mexico and Honduras</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10NSR3D</td>
<td>Survey Study of and Stocking Densities for Tilapia-Shrimp Polycultures: Stocking Densities for Tilapia-Shrimp Polyculture in Mexico</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10NSR3E</td>
<td>Survey Study of and Stocking Densities for Tilapia-Shrimp Polycultures: Survey of Tilapia-Shrimp Polycultures in Philippines</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10NSR4</td>
<td>Evaluation of Growth and Reproductive Performance of Three Strains of Nile Tilapia Oreochromis niloticus Found in Kenya for Use in Aquaculture</td>
<td>Phelps</td>
<td>Auburn University</td>
<td>2</td>
<td>Split into 2 investigations.</td>
</tr>
<tr>
<td>Code^1</td>
<td>Study Title</td>
<td>Lead US PI^2</td>
<td>US Institution</td>
<td>Final Status^3</td>
<td>Comment or Modification Reference^4</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--------------</td>
<td>------------------------------------</td>
<td>----------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>10PDR1</td>
<td>Effects of Pond Age on Bottom Soil Quality</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10PDR2</td>
<td>Workshops on Using Principles of Pond Dynamics to Optimize Fertilization Efficiency</td>
<td>Batterson</td>
<td>Michigan State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10PDR3</td>
<td>Aquaculture Training for Kenyan Fisheries officers and University Students</td>
<td>Langdon</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10PDVR1</td>
<td>Characteristics of Fish Buyers Likely to Purchase Farm-Raised Tilapia in Honduras and Nicaragua</td>
<td>Engle</td>
<td>University of Arkansas at Pine Bluff</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10PDVR2</td>
<td>Cost Containment Options for Tilapia Production in Central Luzon, Republic of the Philippines</td>
<td>Brown</td>
<td>Florida International University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10PDVR3</td>
<td>Transfer of Production Technology to Nepal for Nile Tilapia, Oreochromis niloticus</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10RCR1</td>
<td>Studies on Fate of Methyltestosterone and Its Metabolites in Tilapia and on the Use of Phytochemicals as an Alternative Method to Produce a Monosex Population of Tilapia</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10RCR2</td>
<td>Selection of a New Nile Tilapia Genetic Line to Provide Broodstock for Southeastern Mexico</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10RCR3</td>
<td>IGF as a Growth Rate Indicator in Oreochromis niloticus</td>
<td>Brown</td>
<td>Florida International University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------------</td>
<td>--</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>11AHHR1</td>
<td>Cross-Sectoral and International Extension Exchange and Learning</td>
<td>Haws</td>
<td>University of Hawaii at Hilo</td>
<td>1</td>
<td>Addendum to 11th Work Plan.</td>
</tr>
<tr>
<td>11AHHR2</td>
<td>Connectivity of Water Resource Status, Environmental Quality, Aquaculture, and Human Health</td>
<td>Haws</td>
<td>University of Hawaii at Hilo</td>
<td>1</td>
<td>Addendum to 11th Work Plan.</td>
</tr>
<tr>
<td>11AHHR3</td>
<td>Analysis of Critical Points in Aquaculture Production Affecting Participation and Level of Benefits to Women, Youth, and Disadvantaged Stakeholders</td>
<td>Haws</td>
<td>University of Hawaii at Hilo</td>
<td>1</td>
<td>Addendum to 11th Work Plan.</td>
</tr>
<tr>
<td>11ATER1</td>
<td>Training Local Farmers on Safe Handling of Steroids and Masculinization Techniques in Central America</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11ATER2</td>
<td>Aquaculture CRSP Sponsorship of the Sixth International Symposium on Tilapia in Aquaculture</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11ATER3</td>
<td>Aquaculture CRSP—Global Contributions to Sustainable Aquaculture: A Special Session at the 2004 World Aquaculture Conference</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11ATER4</td>
<td>Aquaculture Training for Kenyan Fisheries Assistants</td>
<td>Langdon</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11ATER5</td>
<td>Evaluation of Aquaculture Training Provided to Fisheries Officers and Fisheries</td>
<td>Langdon</td>
<td>Oregon State University</td>
<td>1</td>
<td>Work plan in MoU.</td>
</tr>
<tr>
<td>11DPPR1</td>
<td>Food Safety and Handling: Increasing Local Consumption of Aquaculture Products and Improving Quality</td>
<td>Haws</td>
<td>University of Hawaii at Hilo</td>
<td>1</td>
<td>Addendum to 11th Work Plan.</td>
</tr>
<tr>
<td>11EIAR1</td>
<td>Co-Culture of Lotus and Hybrid Catfish to Recycle Wastes from Intensive Feeding Environmental</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11EIAR2</td>
<td>Further Studies on Soil Quality in Aquaculture Ponds in Thailand</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code1</td>
<td>Study Title</td>
<td>Lead US PI2</td>
<td>US Institution</td>
<td>Final Status3</td>
<td>Comment or Modification Reference4</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>-------------</td>
<td>---</td>
<td>---------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>11ERAR1</td>
<td>Preliminary Work on Site Description, Evaluation and Development Planning: Tanzania, Ghana, and Kenya</td>
<td>Quagrainie</td>
<td>University of Arkansas at Pine Bluff</td>
<td>1</td>
<td>Addendum to 11th Work Plan.</td>
</tr>
<tr>
<td>11ERA2</td>
<td>Cost Evaluation and Benefit Assessment of Fish Farming in Selected African Nations</td>
<td>Quagrainie</td>
<td>Purdue University</td>
<td>1</td>
<td>Addendum to 11th Work Plan.</td>
</tr>
<tr>
<td>11ERA3</td>
<td>An Economic Assessment of Aquaculture in Rural Africa: The Case of Tanzania, Kenya and Ghana</td>
<td>Quagrainie</td>
<td>Purdue University</td>
<td>1</td>
<td>Addendum to 11th Work Plan.</td>
</tr>
<tr>
<td>11ERA4</td>
<td>A Cross-National Analysis of the Potential Economic Impact of Aquaculture in Africa</td>
<td>Quagrainie</td>
<td>Purdue University</td>
<td>1</td>
<td>Addendum to 11th Work Plan.</td>
</tr>
<tr>
<td>11FNFR1</td>
<td>Nutrition and Nutrient Utilization in Native Peruvian Fishes</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11FNFR2</td>
<td>Evaluation of Tilapia Aquaculture Best Practices in Central Luzon, the Philippines</td>
<td>Brown</td>
<td>Florida International University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11FNFR3</td>
<td>Use of Phytochemicals as an Environmentally-Friendly Method to Sex-Reverse Nile Tilapia</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11FNFR4</td>
<td>Insulin-like Growth Factor-I as a Growth Indicator in Tilapia</td>
<td>Brown</td>
<td>Florida International University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11ISDR1</td>
<td>Broodstock Development and Larval Feeding of Amazonian Fishes</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>2</td>
<td>Split into 2 investigations.</td>
</tr>
<tr>
<td>11ISDR1A</td>
<td>Broodstock Development and Larval Feeding of Amazonian Fishes</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td>Objective 1 of 11ISDR1.</td>
</tr>
<tr>
<td>11ISDR1B</td>
<td>Broodstock Development and Larval Feeding of Amazonian Fishes</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11ISDR2</td>
<td>Controlled Reproduction of an Important Indigenous Species, Spinibarbus denticulatus, in Southeast Asia</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>-------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>11ISDR3</td>
<td>Development of Aquaculture Techniques for the Indigenous Species of Southern Mexico, Centropomus undecimalis: Sex Determination and Differentiation and Effects of Temperature</td>
<td>Patiño</td>
<td>Texas Tech University</td>
<td>1</td>
<td>Reprinted in Addendum to 11th Work Plan due to a printing error omission in the 11th Work Plan. Incorrectly coded as 11.5ISD3 in the Addendum Table of Contents.</td>
</tr>
<tr>
<td>11PSDR1</td>
<td>Diversification Into Sustainable Tilapia-Shrimp Polyculture and Small-Scale Tilapia Cage Culture in Mexico</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>11PSDR2</td>
<td>New Paradigm in Farming of Freshwater Prawn (Macrobrachium rosenbergii) With Closed and Recycle Systems</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11PSDR3</td>
<td>Integrated Cage-Cum-Pond Culture Systems with High-Valued Fish Species in Cages and Low-Valued Species in Open Ponds</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Split into 3 investigations.</td>
</tr>
<tr>
<td>11PSDR3A</td>
<td>Integrated Cage-Cum-Pond Culture Systems With High-Valued Stinging Catfish (Heteropneustes fossilis) in Cages and Low-Valued Carps in Open Ponds</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Revised title.</td>
</tr>
<tr>
<td>11PSDR3B</td>
<td>Integrated Cage-Cum-Pond Culture Systems With High-Valued Sahar (Tor putitora) in Cages Suspended in Carp Polyculture Ponds</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Revised title.</td>
</tr>
<tr>
<td>11PSDR4</td>
<td>Mitigating Environmental Impact of Cage Culture through Integrated Cage-Cum-Cove Culture System in Tri An Reservoir of Vietnam</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11PSDR5</td>
<td>Optimization of Nitrogen Fertilization Regime in Fertilized Nile Tilapia Ponds With Supplemental Feed</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11PSDR6</td>
<td>Workshop on Fertilization Strategies for Pond Culture in Bangladesh</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>11SDFR1</td>
<td>Amazon Aquaculture Outreach</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11SDFR2</td>
<td>Tilapia (Oreochromis niloticus) Production Constraints in Bangladesh</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Split into 3 investigations by objectives.</td>
</tr>
<tr>
<td>11SDFR3</td>
<td>Reproductive Performance and Growth of Improved Tilapia, Oreochromis niloticus</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11SSDR1</td>
<td>Mitigating the Effects of High Temperature and Turbidity on Seed Production of Nile Tilapia from Hapa-in-Pond Systems</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Reported as 11SDAR1 in 22ATR.</td>
</tr>
<tr>
<td>11SSDR2</td>
<td>Evaluation and Improvement of Tilapia Fingerling Production and Availability in Honduras</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>2</td>
<td>Reported as 11SDAR2 in 22ATR.</td>
</tr>
<tr>
<td>11SSDR3</td>
<td>Continuation of a Selective Breeding Program for Nile Tilapia to Provide Quality Broodstock for Central America</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>2</td>
<td>Reported as 11SDAR3 in 22ATR.</td>
</tr>
<tr>
<td>11WQAR1</td>
<td>Elimination of Methyltestosterone from Intensive Masculinization Systems: Use of Ultraviolet Irradiation of Water</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11WQAR3</td>
<td>Pond Design and Watershed Analyses Training</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------------</td>
<td>-------------------------------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>11WQAR4</td>
<td>Influence of Daily Feed Allowance on Pond Water and Effluent Quality</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12AHH1</td>
<td>Water Quality Monitoring and Identification of Pollution Sources</td>
<td>Haws</td>
<td>University of Hawaii at Hilo</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12AHH2</td>
<td>Outreach and Planning for Implementation of Bivalve Growing Areas</td>
<td>Haws</td>
<td>University of Hawaii at Hilo</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ATE1</td>
<td>Integrated Cage-Cum-Pond Culture Systems</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Split into 3 investigations by country.</td>
</tr>
<tr>
<td>12ATE1A</td>
<td>Integrated Cage-Cum-Pond Culture Systems: Climbing Perch</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>See 12ATE1. Revised title.</td>
</tr>
<tr>
<td>12ATE2</td>
<td>Reproductive Performance and Growth of Improved Tilapia</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ATE3</td>
<td>Aquaculture Training for Kenyan Extension Workers</td>
<td>Langdon</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ATE4</td>
<td>Training Local Farmers on Safe Handling of Steroids and Masculinization Techniques</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code^1</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status^3</td>
<td>Comment or Modification Reference^4</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------------</td>
<td>------------------------------</td>
<td>----------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>12ATE5</td>
<td>Establishment of the Center for Aquaculture Technology Transfer</td>
<td>Baker</td>
<td>Cornell University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ATE6</td>
<td>Diversifying and Strengthening Aquaculture Extension Capacity to Develop a Regional Extension Service Model</td>
<td>Haws</td>
<td>University of Hawaii at Hilo</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ATE7</td>
<td>Site Visits and Information Exchange on Cichlid Culture and the Adoption of Aquaculture CRSP Technologies in ACRSP Host Countries</td>
<td>Bowman</td>
<td>Oregon State University</td>
<td>2</td>
<td>Final Report in 24AAR; combined with 12ATE8.</td>
</tr>
<tr>
<td>12ATE8</td>
<td>Comparison of the Implementation of CRSP Technologies in Five Aquaculture CRSP Host Countries</td>
<td>Bowman</td>
<td>Oregon State University</td>
<td>2</td>
<td>See 12ATE7.</td>
</tr>
<tr>
<td>12ATE9</td>
<td>Special Sessions, Travel, and Poster Awards at 2005 and 2006 World Aquaculture Conferences and Aquaculture America–2006</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>2</td>
<td>1st Addendum to 12th Work Plan; supplemental funding expanded the scope of travel and awards.</td>
</tr>
<tr>
<td>12ATE10</td>
<td>Aquaculture CRSP Sponsorship of the Seventh International Symposium on Tilapia in Aquaculture</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ATE11</td>
<td>Kenya Training of Trainers and Regionalization of Aquaculture Training Activities</td>
<td>Langdon</td>
<td>Oregon State University</td>
<td>1</td>
<td>1st Addendum to 12th Work Plan. See 11ATER6.</td>
</tr>
<tr>
<td>12ATE12</td>
<td>Aquaculture CRSP Sponsorship of the Second International Symposium On Cage Aquaculture in Asia</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td>1st Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12ATE13</td>
<td>Promoting Environmentally-Friendly Integrated Cage-Cum-Pond Culture Systems</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td>1st Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12ATE14</td>
<td>Post-Tsunami Training in New Aquaculture Technologies in Thailand and Indonesia</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td>1st Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12ATE15</td>
<td>Aquaculture CRSP Support for IIFET 2006 Portsmouth</td>
<td>Johnston</td>
<td>Oregon State University</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12ATE16</td>
<td>Workshops for the Cultivation of New Species in Brazil and Peru</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>12ATE17</td>
<td>ACRSP Support for Development of Aquaculture Economics</td>
<td>Johnston</td>
<td>Oregon State University</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12ATE18</td>
<td>Special Sessions, Travel and Poster Awards at 2007 World Aquaculture Conference, Site Descriptions Update</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12EIA1</td>
<td>Best Practices for Management of Aquaculture Pond Soils in Thailand</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12EIA2</td>
<td>Establishment of Links with Chinese Institutions in Collaboration on Aquaculture and Environmental Impacts</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12EIA4</td>
<td>Building the Capacity of Moi University to Conduct Watershed Assessment</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12EIA5</td>
<td>Land-use Practices, Policy and Tenure Regimes in the Nzoia River Basin</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12EIA6</td>
<td>Workshops on Guidelines for Developing Aquaculture Best Management Practices</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12EIA7</td>
<td>Workshops on Better Practices for Sustainable Aquaculture</td>
<td>Boyd</td>
<td>Auburn University</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12EIA8</td>
<td>Building the Capacity of Moi University to Have a Working GIS Lab and First Generation GIS Model of the Nzoia River Basin</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12ERA1</td>
<td>Assessment of Coastal and Marine Aquaculture Development for Low Trophic Level Species</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ERA2</td>
<td>Hydraulic, Water Quality and Social Assessment of the Nzoia Basin, Kenya</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ERA3</td>
<td>Farmers Training in Tanzania</td>
<td>Quagrainie</td>
<td>Purdue University</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 1. INVESTIGATION SUMMARY & ASSESSMENT

<table>
<thead>
<tr>
<th>Code</th>
<th>Study Title</th>
<th>Lead US PI</th>
<th>US Institution</th>
<th>Final Status</th>
<th>Comment or Modification Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>12ERA5</td>
<td>Ex Ante Assessment of Coastal and Marine Aquaculture Development: Charting Comparative Strengths and Weaknesses of Low Trophic Species for offshore Aquaculture in Developed and Developing Countries</td>
<td>Skladany</td>
<td>Institute for Agriculture & Trade Policy</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ERA6</td>
<td>Bivalve Market Study in Pacific Mexico</td>
<td>Haws</td>
<td>University of Hawaii at Hilo</td>
<td>1</td>
<td>1st Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12FNF1</td>
<td>Effects of Native Peruvian Feedstuffs on Growth and Health of Colossoma and Piaractus</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12FNF2</td>
<td>Nutrition and Nutrient Utilization in Native Peruvian Fishes</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12FNF3</td>
<td>Use of Phytochemicals as a New Method to Sex-Reverse Nile Tilapia and Tropical Gar Fish</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>2</td>
<td>Split into 2 investigations by experimental objective.</td>
</tr>
<tr>
<td>12FNF3A</td>
<td>Use of Phytochemicals as a New Method to Sex-Reverse Nile Tilapia and Tropical Garfish. Part I: Use of Aqueous Plant Extracts in Tilapia</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>2</td>
<td>See 12FNF3. Revised title.</td>
</tr>
<tr>
<td>12FNF3B</td>
<td>Use of Phytochemicals as a New Method to Sex-Reverse Nile Tilapia and Tropical Garfish. Part II: Initiation of Feeding and Gonad Differentiation in Longnose Garfish</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>2</td>
<td>See 12FNF3. Revised title.</td>
</tr>
<tr>
<td>12FNF4</td>
<td>Reproduction of Pacu (Piaractus mesopotamicus) and Surubim (Pseudoplatystoma tigrinum) and a New Paradigm in Nutrition of Tropical Fishes</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12ISD1</td>
<td>Controlled Reproduction of an Important Indigenous Species, Spinibarbus denticulatus, in Southeast Asia</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ISD2</td>
<td>Broodstock Development of Amazonian Fishes</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>12ISD3</td>
<td>Incorporation of the Native Cichlid Petenia splendida into Sustainable Aquaculture: Reproduction Systems, Nutrient Requirements and Feeding Strategies</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ISD4</td>
<td>Broodstock Development and Larval Feeding of Amazonian Fishes</td>
<td>Dabrowski</td>
<td>Ohio State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12ISD5</td>
<td>Egg Hatching Quality Of Amazonian Fishes</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12ISD6</td>
<td>Influence Of Dietary Fatty Acid Composition On Reproductive Performance Of Colossoma macropomum</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12PSD1</td>
<td>New Paradigm in Farming of Freshwater Prawn (Macrobrachium rosenbergii) With Closed And Recycle Systems</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Split into 3 investigations by country and reported separately as 12PSD1A, 12PSD1B, and 12PSD1C.</td>
</tr>
<tr>
<td>12PSD1A</td>
<td>New Paradigm in Farming of Freshwater Prawn (Macrobrachium rosenbergii) With Closed And Recycle Systems in Thailand</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12PSD1B</td>
<td>New Paradigm in Farming of Freshwater Prawn (Macrobrachium rosenbergii) With Closed And Recycle Systems in Bangladesh</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12PSD1C</td>
<td>New Paradigm in Farming of Freshwater Prawn (Macrobrachium rosenbergii) With Closed And Recycle Systems in Vietnam</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12PSD2</td>
<td>Optimization of Fertilization Regimes in Fertilized Nile Tilapia Ponds with Supplemental Feed</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12PSD3</td>
<td>Use of Rice Straw as a Resource for Freshwater Pond Culture</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>Split into 2 investigations by experimental objectives.</td>
</tr>
<tr>
<td>Code1</td>
<td>Study Title</td>
<td>Lead US PI2</td>
<td>US Institution</td>
<td>Final Status3</td>
<td>Comment or Modification Reference4</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>----------------</td>
<td>--</td>
<td>-----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>12PSD4</td>
<td>Development of a Recirculating Aquaculture System Module for Family/Multi-Family Use</td>
<td>Baker</td>
<td>Cornell University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12PSD5</td>
<td>Insulin-Like Growth Factor-1 Gene Expression as a Growth Indicator in Nile Tilapia</td>
<td>Brown</td>
<td>Florida International University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12PSD6</td>
<td>Development of Nile Tilapia Fillets as an Export Product for the Philippines</td>
<td>Brown</td>
<td>Florida International University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12PSD7</td>
<td>Tilapia–Shrimp Polyculture in Negros Occidental, Philippines</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12PSD8</td>
<td>Testing Three Styles of Tilapia–Shrimp Polyculture in Tabasco, Mexico</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12PSD9</td>
<td>Student Exchange Program to Strengthen Capacity in Chinese Environmental Studies of Aquaculture</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>1st Addendum to 12th Work Plan; split into 2 investigations by experimental objectives.</td>
</tr>
<tr>
<td>12SDA1</td>
<td>Evaluation and Improvement of Tilapia Fingerling Production and Availability in Honduras</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12SDA2</td>
<td>Studies on Strategies for Increasing the Growth and Survival of African Catfish (Clarias gariepinus) Juveniles Reared for Stocking or for Use as Bait</td>
<td>Langdon</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>12SDA3</td>
<td>Continuation of a Selective Breeding Program for Nile Tilapia to Provide Quality Broodstock for Central America</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td>1st Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12SDA4</td>
<td>Development of Aquaculture Techniques for the Indigenous Species of Southern Mexico, Centropomus undecimalis: Sex Determination and Differentiation and Effects of Temperature</td>
<td>Patiño</td>
<td>Texas Tech University</td>
<td>1</td>
<td>1st Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12SDA5</td>
<td>Kenya Capacity Building: Student Research and Thesis Support</td>
<td>Langdon</td>
<td>Oregon State University</td>
<td>1</td>
<td>1st Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12SDA6</td>
<td>Improvement of Tilapia Fingerling Production and Availability in Central America</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>1</td>
<td>1st Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12SDF1</td>
<td>Amazon Aquaculture Outreach</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12SDF2</td>
<td>Understanding the Aquacultural Knowledge and Information System for Commercial Tilapia Production in Nicaragua: Economics, Institutions, and Markets</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>2</td>
<td>1st Addendum to 12th Work Plan. Two Final Technical Reports in 24ATR (Objectives 1–3) and 25ATR (Objective 1).</td>
</tr>
<tr>
<td>12SDF3</td>
<td>Assessing the Potential for Aquacultural Development to Promote Food Security Among Indigenous People in Guatemala</td>
<td>Molnar</td>
<td>Auburn University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12SDF4</td>
<td>First Annual Sustainable Aquaculture Technology Transfer Workshop</td>
<td>Baker</td>
<td>Cornell University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12SDF5</td>
<td>Amazon Aquaculture Outreach: 5th International Aquaculture Extension Course in the Amazon Region and 1st Meeting For the Amazon Region Aquaculturists</td>
<td>Kohler</td>
<td>Southern Illinois University at Carbondale</td>
<td>1</td>
<td>1st Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12SDF6</td>
<td>The Eagle of the North and the Condor of the South Aquaculture Exchange Project – Peru</td>
<td>Kohler</td>
<td>Southern Illinois University at Carbondale</td>
<td>2</td>
<td>1st Addendum to 12th Work Plan. Combined with 12FSD8 for the Final Technical Report.</td>
</tr>
<tr>
<td>Code</td>
<td>Study Title</td>
<td>Lead US PI</td>
<td>US Institution</td>
<td>Final Status</td>
<td>Comment or Modification Reference</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------------</td>
<td>--</td>
<td>--------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>12SDF7</td>
<td>Aquaculture Outreach in the Amazon Basin</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12SDF8</td>
<td>The Eagle of the North and the Condor of the South Aquaculture Exchange Project – Mexico</td>
<td>Fitzsimmons</td>
<td>University of Arizona</td>
<td>2</td>
<td>2nd Addendum to 12th Work Plan. Combined with 12FSD6 for the Final Technical Report.</td>
</tr>
<tr>
<td>12SDF9</td>
<td>Sixth International Aquaculture Training Course in the Amazon Region</td>
<td>Kohler</td>
<td>Southern Illinois University</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12WQA1</td>
<td>Pond Design and Watershed Analyses Training</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12WQA2</td>
<td>Elimination of Methyltestosterone from Intensive Masculinization Systems: Use of Ultraviolet Irradiation of Water</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12WQA3</td>
<td>Elimination of Methyltestosterone from Intensive Masculinization systems: Use of Solar Irradiation and Bacterial Degradation</td>
<td>Schreck</td>
<td>Oregon State University</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12WQA4</td>
<td>Ecological Assessment of Selected Sub-Watersheds of the Nzoia River Basin</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12WQA5</td>
<td>Determination of Hydrologic Baselines for the Nzoia Basin</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12WQA6</td>
<td>Student Research to Assess Environmental Impacts of Cage Aquaculture in Tong An Bay in Fujian Province of China</td>
<td>Diana</td>
<td>University of Michigan</td>
<td>2</td>
<td>1st Addendum to 12th Work Plan. Revised title, deleting "the Tong An Bay".</td>
</tr>
<tr>
<td>12WQA7</td>
<td>Pelagic (Fish) and Benthic Ecology of Selected Sub-Watersheds of the Nzoia River Basin</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
<tr>
<td>12WQA8</td>
<td>Hydrologic Modeling in the Nzoia River Basin</td>
<td>Tollner</td>
<td>University of Georgia</td>
<td>1</td>
<td>2nd Addendum to 12th Work Plan.</td>
</tr>
</tbody>
</table>
APPENDIX 2. WORK PLANS & ANNUAL ADMINISTRATIVE REPORTS: 1979 TO 2008

<table>
<thead>
<tr>
<th>Grant Years</th>
<th>Grant No.</th>
<th>Annual Administrative Reports</th>
<th>Work Plan</th>
<th>Title</th>
<th>Publication Date</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979-1982</td>
<td>AID/DSAN-G-0264</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1982-1987</td>
<td>DAN-4023-G-SS-2074-00</td>
<td>First</td>
<td>1st Work Plan</td>
<td>July 1983</td>
<td>1983 to 1984</td>
<td>likely 9/1 to 8/31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Second</td>
<td>2nd Work Plan</td>
<td>July 1984</td>
<td>1984 to 1985</td>
<td>likely 9/1 to 8/31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third</td>
<td>3rd Work Plan</td>
<td>July 1985</td>
<td>1985 to 1986</td>
<td>likely 9/1 to 8/31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fourth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fifth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seventh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eighth</td>
<td>5th Work Plan</td>
<td>Developed May 1989, no printing date</td>
<td>9/1/89 to 8/31/91</td>
<td></td>
</tr>
<tr>
<td>1990-1996</td>
<td>DAN-4023-G-00-0031-00</td>
<td>Ninth</td>
<td>6th Work Plan</td>
<td>Developed March 1991, no printing date</td>
<td>9/1/91 to 8/31/93</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tenth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eleventh</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Twelfth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thirteenth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 All Annual Reports cover the reporting period 1 September through 31 August of the following year. Beginning with the Eleventh Annual Administrative Report, a companion Annual Technical Report was also published. For the Twentieth, only an Annual Administrative Report was published.

6 The Aquaculture CRSP Egypt project (USAID Grant No. 263-0152-G-00-2231-00) was also reported during the period covered by the Eleventh and Twelfth Annual Reports.
<table>
<thead>
<tr>
<th>Grant Years</th>
<th>Grant No.</th>
<th>Annual Administrative Reports</th>
<th>Work Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Title</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fourteenth</td>
<td>Interim Work Plan</td>
</tr>
<tr>
<td>1996-2006</td>
<td>LAG-G-00-96-90015-00</td>
<td>Fifteenth</td>
<td>8th Work Plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1st Addendum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2nd Add.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3rd Add.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sixteenth</td>
<td>Interim Work Plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seventeenth</td>
<td>9th Work Plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Addendum</td>
</tr>
<tr>
<td>1996-2006</td>
<td>LAG-G-00-96-90015-00</td>
<td>Eighteenth</td>
<td>10th Work Plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nineteenth</td>
<td>11th Work Plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Addendum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Twenty-first</td>
<td>11th Work Plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Part II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Twenty-second</td>
<td>12th Work Plan</td>
</tr>
<tr>
<td>2006-2008</td>
<td>LAG-G-00-96-90015-00</td>
<td>Twenty-fourth</td>
<td>12th Work Plan</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Addendum I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Addendum II</td>
</tr>
</tbody>
</table>

7 Investigations in the 11th Work Plan, Part II were transferred to the 12th Work Plan with no change to the scientific theme or investigation codes.
APPENDIX 3. RESEARCH & OUTREACH THEMES:
8TH to 12TH WORK PLANS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Scientific Themes</th>
<th>Work Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR</td>
<td>Adoption/Diffusion Research or Adoption & Diffusion Research</td>
<td>8th, 9th, 10th</td>
</tr>
<tr>
<td>AHH</td>
<td>Aquaculture & Human Health Impacts</td>
<td>12th</td>
</tr>
<tr>
<td>AHHR</td>
<td>Aquaculture & Human Health Impacts Research</td>
<td>11th</td>
</tr>
<tr>
<td>ASMR</td>
<td>Aquaculture Systems Modeling Research</td>
<td>8th, 9th, 10th</td>
</tr>
<tr>
<td>ATE</td>
<td>Applied Technology & Extension Methodologies</td>
<td>12th</td>
</tr>
<tr>
<td>ATER</td>
<td>Applied Technology & Extension Methodologies Research</td>
<td>11th</td>
</tr>
<tr>
<td>ATR</td>
<td>Appropriate Technology Research</td>
<td>9th, 10th</td>
</tr>
<tr>
<td>DM</td>
<td>Database Management</td>
<td>8th, 9th</td>
</tr>
<tr>
<td>DPPR</td>
<td>Disease Predation, Prevention, and Food Safety</td>
<td>11th</td>
</tr>
<tr>
<td>DSSR</td>
<td>Decision Support Systems Research</td>
<td>8th, 9th, 10th</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impacts Analysis</td>
<td>12th</td>
</tr>
<tr>
<td>EIAR</td>
<td>Environmental Impacts Analysis Research</td>
<td>11th</td>
</tr>
<tr>
<td>ER</td>
<td>Effluents & Pollution Research</td>
<td>9th, 10th</td>
</tr>
<tr>
<td>ERA</td>
<td>Economic/Risk Assessment & Social Analysis</td>
<td>12th</td>
</tr>
<tr>
<td>ERAR</td>
<td>Economic/Risk Assessment & Social Analysis Research</td>
<td>11th</td>
</tr>
<tr>
<td>FFR</td>
<td>Feeds & Fertilizers Research</td>
<td>8th, 9th, 10th</td>
</tr>
<tr>
<td>FNF</td>
<td>Fish Nutrition & Feed Technology</td>
<td>12th</td>
</tr>
<tr>
<td>FNFR</td>
<td>Fish Nutrition & Feed Technology Research</td>
<td>11th</td>
</tr>
<tr>
<td>FSR</td>
<td>Food Security Research</td>
<td>10th</td>
</tr>
<tr>
<td>GISR</td>
<td>GIS: Planning, Policy, & Global Data Analysis Research</td>
<td>10th</td>
</tr>
<tr>
<td>HCD</td>
<td>Human Capacity Development</td>
<td>8th, 9th</td>
</tr>
<tr>
<td>HR</td>
<td>Honduras Research</td>
<td>8th</td>
</tr>
<tr>
<td>IMNC</td>
<td>Information Management & Networking Component</td>
<td>8th, 9th</td>
</tr>
<tr>
<td>ISD</td>
<td>Indigenous Species Development</td>
<td>12th</td>
</tr>
<tr>
<td>ISDR*</td>
<td>Indigenous Species Development Research</td>
<td>11th</td>
</tr>
<tr>
<td>KR</td>
<td>Kenya Research</td>
<td>8th</td>
</tr>
<tr>
<td>MEAR</td>
<td>Marketing & Economic Analysis Research</td>
<td>8th, 9th, 10th</td>
</tr>
<tr>
<td>NS</td>
<td>New Aquaculture Systems/New Species</td>
<td>9th</td>
</tr>
</tbody>
</table>
APPENDIX 3. RESEARCH & OUTREACH THEMES

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Scientific Themes</th>
<th>Work Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSR*</td>
<td>New Aquaculture Systems/New Species Research</td>
<td>10th</td>
</tr>
<tr>
<td>PDR</td>
<td>Pond Dynamics Research</td>
<td>8th, 9th, 10th</td>
</tr>
<tr>
<td>PDVR</td>
<td>Product Diversification Research</td>
<td>10th</td>
</tr>
<tr>
<td>PHR</td>
<td>Philippines Research</td>
<td>8th</td>
</tr>
<tr>
<td>PR</td>
<td>Peru Research</td>
<td>8th</td>
</tr>
<tr>
<td>PSD</td>
<td>Production System Design & Integration</td>
<td>12th</td>
</tr>
<tr>
<td>PSDR</td>
<td>Production System Design & Integration Research</td>
<td>11th</td>
</tr>
<tr>
<td>RA</td>
<td>Regional Analysis: Human-Environment Interactions</td>
<td>9th</td>
</tr>
<tr>
<td>RCR</td>
<td>Reproduction Control Research</td>
<td>8th, 9th, 10th</td>
</tr>
<tr>
<td>SDA</td>
<td>Seedstock Development & Availability</td>
<td>12th</td>
</tr>
<tr>
<td>SDF</td>
<td>Sustainable Development & Food Security</td>
<td>12th</td>
</tr>
<tr>
<td>SDFR*</td>
<td>Sustainable Development & Food Security Research</td>
<td>11th</td>
</tr>
<tr>
<td>SSDR</td>
<td>Seedstock Development & Availability Research</td>
<td>11th</td>
</tr>
<tr>
<td>TR</td>
<td>Thailand Research</td>
<td>8th</td>
</tr>
<tr>
<td>WQA</td>
<td>Water Quality & Availability</td>
<td>12th</td>
</tr>
<tr>
<td>WQAR*</td>
<td>Water Quality & Availability Research</td>
<td>11th</td>
</tr>
</tbody>
</table>

* Scientific theme codes introduced in the 11th Work Plan and transferred to the 12th Work Plan without the terminal "R" (Research) in the acronym.
APPENDIX 4. COMPENDIUM OF PUBLICATIONS:
1982 through 2008

I. REGIONAL RESEARCH: CENTRAL AMERICA AND THE AMAZON BASIN

A. HONDURAS PROJECTS

1. ASIAN INSTITUTE OF TECHNOLOGY

Publications

2. AUBURN UNIVERSITY

Theses

Publications
APPENDIX 4. COMPLENDEUM OF PUBLICATIONS

Presentations

Trejos-Castillo, E. Fish culture as a sustainable rural livelihood: Case study of the functioning clusters of successful small-scale tilapia producers in Santa Barbara, Honduras. Presented to the Agricultural Workers Conference, Tuskegee University, Alabama, December 2002.

3. ESCUELA AGRÍCOLA PANAMERICANA EL ZAMORANO

Theses

Publications

Presentations

4. UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS

Theses

Garces, C., 1986. Quantitative analysis of zooplankton in fish ponds fertilized with triple superphosphate during the rainy season. B.S. thesis, Department of Biology, Universidad Nacional Autonoma de Honduras, Tegucigalpa, Honduras. (in Spanish)

Sherman, C., 1992. All female culture of *Tilapia nilotica* in ponds fertilized with chicken litter. B.S. thesis, Department of Biology, Universidad Nacional Autonoma de Honduras, Tegucigalpa, Honduras. (in Spanish)

5. UNIVERSITY OF ARKANSAS AT PINE BLUFF

Theses

Publications

Presentations

6. UNIVERSITY OF GEORGIA
Publications

7. UNIVERSITY OF TEXAS, AUSTIN
Publications

B. MEXICO

1. THE OHIO STATE UNIVERSITY, COLUMBUS
Publications

Presentations

2. UNIVERSITY OF ARIZONA

Publications

Presentations

3. UNIVERSIDAD JUAREZ AUTONOMA DE TABASCO

Theses
Ramon-Zapata, F. Frecuencia de alimentación y su efecto sobre el desarrollo, crecimiento y supervivencia de las larvas de pejelagarto, Atractosteus tropicus, en condiciones de laboratorio. B.S. thesis, Universidad Juárez Autónoma de Tabasco, Mexico.

Publications

Vidal-López, J.M. Masculinización de crías de la mojarra tenhuayaca Petenia splendida, mediante bioencapsulado del esteroide 17a-metiltestosterona en nauplios de Artemia salina.

Presentations

Contreras-Sánchez, W. Use of clean technologies for aquaculture to eliminate MT from intensive masculinization systems. Presented at Villahermosa, Tabasco, Mexico, 8 August 2003.

Martinez-Garcia, Rafael, November, 2007. Polyculture of tilapia and shrimp. WAS – Latin America Chapter San Juan, Puerto Rico
4. UNIVERSITY OF HAWAI‘I, Hilo

Publications
Haws, M.C. and J. Supan. 2007. Edible bivalve culture in Hawai‘i, bridging the past, present and future: a white paper. Pacific Aquaculture and Coastal Resources Center, University of Hawai‘i Hilo.

5. UNIVERSIDAD AUTÓNOMA DE SINALOA, MAZATLAN

Thesis

Presentations

C. NICARAGUA

1. UNIVERSITY OF ARKANSAS AT PINE BLUFF

Theses
Publications

D. PANAMA ~ AGUADULCE

1. AUBURN UNIVERSITY

Theses

Publications
diets and stocking density on production of *Penaeus vannamei* cultured in earth ponds).

Revista Latinoamericana de Acuicultura, 35:29–33.

Presentations

Torres, A. Produccion de *Penaeus stylirostris* bajo la influencia del *Penaeus vannamei*, en estanques experimentales de agua salobre con y sin alimentacion durante la epoca seca. Presented to the First National Scientific Congress, at University of Panama, Panama, December 1984.
2. UNIVERSITY OF PANAMA

Theses

E. PANAMA ~ GUALACA

1. AUBURN UNIVERSITY

Theses

Publications

Presentations

2. UNIVERSITY OF PANAMA

Theses
Serrano, A., 1987. Economics of tilapia production in monoculture or in polyculture with prawns, and utilizing manure or a commercial pellet as the nutrient input in Gualaca, Panama. B.S. thesis, University of Panama, Panama.

F. PERU

1. **AUBURN UNIVERSITY**

 Presentations

2. **INSTITUTO DE INVESTIGACIONES DE LA AMAZONIA PERUANA**

 Publications

 Presentations
 Alcántara, F. Performance of *Piaractus brachypomus* and *Colossoma macropomum* stocked in ponds at different densities in Iquitos, Peru. Presented to Development of Aquaculture in the Amazon, at Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru, 30 November–4 December 1999.
 Alcántara, F. Status of aquaculture in the Peruvian Amazon. Presented to Development of Aquaculture in the Amazon, at Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru, 30 November–4 December 1999.
 Alcántara, F., C. Chávez, L. Rodríguez, C. Kohler, T. Kohler, and W. Camargo (presenter). Gamitana (*Colossoma macropomum*) and Paco (*Piaractus brachypomus*) culture in floating...

3. SOUTHERN ILLINOIS UNIVERSITY AT CARBONDALE

Publications
Video: Acuacultura en la Amazonia Peruana, experiencia en la carretera Iquitos-Nauta. SWA TV, July 2003. 7 min. Audience consists of general public, over 1,000. (In Spanish)

Presentations
Chu-Koo, F. Evidence of the seed dispersal role of Colossoma macropomum reared in aquaculture in the Peruvian Amazon. Presented to the International Congress of Ichthyology, at Manaus, Brazil, August 2003.

4. THE OHIO STATE UNIVERSITY

Theses

Publications

Dabrowski, Konrad, 2006. Perspectivas para o desenvolvimento de dietas artificiais adequadas para a alimentação de larvas e juvenis de pixes [Perspectives for the development of adjusted artificial diets for the feeding of juvenile larval fish]. Workshop: Larvicultura de Peixes Neotropicaís. Center of the Sao Paulo State University in Jaboticabal, Brazil. 12 August 2006.

Presentations

Dabrowski, K. New developments in diet formulations for larval fish: peptides and growth enhancers. Attended by approximately 60 people from the Institute of Aquaculture, Ministry of Natural Resources (CEPTA, IBAMA), and staff and students from the University of Sao Paolo, Pirassununga, 29 October 2002.

Dabrowski, K., K. Ware, and M. Tesser. Larval and juvenile rearing of pacu *Piaractus mesopotamicus* using live food and formulated diets (Poster presentation).

Dabrowski, Konrad, 2006. Perspectivas para o desenvolvimento de dietas artificiais adequadas para a alimentação de larvas e juvenis de pixes [Perspectives for the development of adjusted artificial diets for the feeding of juvenile larval fish]. Workshop: Larvicultura de Peixes Neotropicais. Center of the Sao Paulo State University in Jaboticabal, Brazil. 12 August 2006.

5. UNIVERSIDAD NACIONAL DE LA AMAZONIA PERUANA

Theses

6. UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS

Publications

7. UNIVERSITY OF ARKANSAS AT PINE BLUFF

Publications

Presentations

II. REGIONAL RESEARCH: AFRICA

A. **EGYPT**

1. AUBURN UNIVERSITY

Publications
Presentations

2. CENTRAL LABORATORY FOR AQUACULTURE RESEARCH, ABBASSA, EGYPT
Publications

Presentations

3. MICHIGAN STATE UNIVERSITY
Publications

4. OREGON STATE UNIVERSITY
Theses

Publications
Gale, W.L., M.S. Fitzpatrick, and C.B. Schreck, 1995. Immersion of Nile tilapia (Oreochromis niloticus) in 17α-methyltestosterone and mestanolone for the production of all-male populations. In: F.W. Goetz and P. Thomas (Editors), Proceedings of the Fifth International Symposium on Reproductive Physiology of Fish, at Austin, Texas, p. 117.

Presentations

B. Kenya

1. Auburn University

Theses

Presentations

Publications

2. MOI UNIVERSITY

Theses

Publications

Presentations

Ngugi, C. On Farm Trials; the Kenyan experience. Presentation given to farmers in Kampala, Uganda, 14 July 2003.

Ngugi, C. Working with fish farmers to develop aquaculture. Presentation given to farmers in Kampala, Uganda, 14 July 2003.

3. UNIVERSITY OF NAIROBI

Theses

Presentations

4. UNIVERSITY OF GEORGIA

Theses

Publications

Presentations

Ssegane, H. and Tollner, E. W.. 2007. Tools for remote watershed assessment. Presented at the ASEE annual meeting, Manhattan, KS., USA

Tollner, E. W. and H. Ssegane. 2007. Tools for remote watershed assessment. Presented at the ASABE meeting, Minneapolis, MN., USA

C. RWANDA

1. AUBURN UNIVERSITY

Theses

Publications

Presentations

2. UNIVERSITÉ NATIONALE DU RWANDA

Theses

Hatangimbabazi, J.D., 1989. Description des communautés planktoniques des différentes habitats de quelques étangs piscicoles de Rwasave (Butare). (Description of plankton communities in different habitats of fish ponds at Rwasave (Butare).) Mémoire présenté en vue de l’obtention du grade de Licencié en Biologie Animale, Université Nationale du Rwanda, Butare, Rwanda.

Murangira, J., 1992. Contribution à l’étude de la productivité de quelques graminées fourragères vis à vis trois fréquences de coupe. (Comparative productivity of eight forage grasses at three cutting frequencies.) Rapport de stage, Ecole Agricole et Vétérinaire de Kabutare, Butare, Rwanda.

Publications
APPENDIX 4. COMPENDIUM OF PUBLICATIONS

Presentations

3. OREGON STATE UNIVERSITY
Theses

Publications

Presentations

Tubb, R. The reduction of estradiol by liver enzymes in carp and rainbow trout. Presented to Toxicology Meetings, at New Orleans, Louisiana, March 1986.

4. UNIVERSITY OF ARKANSAS AT PINE BLUFF

Publications

Presentations

D. TANZANIA

1. PURDUE UNIVERSITY

Presentations

2. KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Presentations

3. UNIVERSITY OF ARKANSAS AT PINE BLUFF

Publications

REGIONAL RESEARCH: SOUTHEAST ASIA

A. INDONESIA

1. INSTITUT PERTANIAN BOGOR

Theses
Harahat, I.S., 1987. Changes of nitrogen concentration of the Nile tilapia ponds which were fertilized with chicken manure. B.S. thesis, Faculty of Fisheries, Institut Pertanian Bogor, Indonesia.
2. MICHIGAN STATE UNIVERSITY

Theses

Publications

Presentations

APPENDIX 4. COMPENDIUM OF PUBLICATIONS

McNabb, C.D. Limnology of fish ponds in Java. Presented as part of the Visiting Scientists Seminar Series, to the College of Fisheries and Marine Science, Agricultural University of Malaysia, at Serdang, Malaysia, February 1986.

Other

National Educational Television and Television of the Republic of Indonesia (TVRI). Improvement of pond culture technology and production. Collaborative aquaculture research: Institut Pertanian Bogor and Michigan State University, Jakarta, Indonesia, 1986. (Videotape, 33 minutes)

B. THE PHILIPPINES

1. CENTRAL LUZON STATE UNIVERSITY

Theses

Publications

Presentations

Bolivar, R.B., 2005. Fisheries Information and Learning Center, a facility established through the ACRSP. Presented to the orientation program for Central Luzon State University fisheries students in the first semester, 21 June 2005.

Bolivar, RB. Comparison on the Use of Cast Net and Seine Net in Fish Samplings in Ponds. Presented at 7th International Symposium on Tilapia in Aquaculture 6-8 September, 2006.

Bolivar, Remedios B., 2005. Tilapia feeding strategies to optimize production in semi-intensive pond culture & CRSP at CLSU. Training information exchange on Cichlid culture and the
adoption of ACRSP technologies in ACRSP Host Countries. Panamerican Agricultural School (Zamorano), Honduras, 8-13 October 2005.

2. UNIVERSITY OF ARIZONA

Publications

Fitzsimmons, K. 2006. ACRSP Helps to rebuild aquaculture in wake of tsunami. Aquanews.

3. UNIVERSITY OF HAWAII

Theses

Publications

Presentations

4. UNIVERSITY OF THE PHILIPPINES IN THE VISAYAS

Theses

Publications

C. THAILAND

1. ASIAN INSTITUTE OF TECHNOLOGY

Theses

Luong, N.T. Stocking Ratios of Hybrid Catfish (Clarias macrocephalus x C. Gariepinus) and Nile Tilapia (Oreochromis niloticus) in Intensive Polyculture System. M.S. thesis, AIT.

Publications

Presentations

Bart, A. Research paper writing for publication in international journals in aquaculture and fisheries. 7 day workshop, at Rajandrapur, Bangladesh, Audience included aquaculture and fisheries university faculty from 5 universities, 1–7 February 2003.

Bart, A. Research proposal writing for external funding in aquaculture and fisheries. 7 day workshop, at Rajandrapur, Bangladesh, audience included aquaculture and fisheries university faculty from 5 universities, 25–31 January 2003.

Cao Ling. 2007. Effects of microbial phytase on the pre-treatment of all-plant feedstuff and replacement of inorganic phosphorous in Nile tilapia (Oreochromis niloticus) feed. WAS 2007, San Antonio, USA, February/March 2007

Yang Yi. 2006. Integrated Aquaculture and Sustainability. The East Asian Sea Congress, Haikou, China, December 2006

Yi, Y. Brief introduction of PD/A CRSP activities in the past two decades. Seminar, audience consisted of government workers, at the BRAC center, Dhaka, Bangladesh, 26 June 2003.
APPENDIX 4. COMPENDIUM OF PUBLICATIONS

Yi, Y. Fertilization strategies for tilapia culture developed by PD/A CRSP. Seminar, audience consisted of government workers, at the BRAC center, Dhaka, Bangladesh, 26 June 2003.
Yi, Y. Minimizing environmental impacts of aquaculture. Presented to Bangladesh Agricultural University, at Mymensingh, Bangladesh, 23 March 2003.
Yi, Y. Pond dynamics. Lecture, presented to the Third Country Training Program on Freshwater Aquaculture, Audience consisted of trainees from ten South and Southeast Asian countries, at Thailand Department of Fisheries and Japan International Cooperation Agency, 1 July 2003.

2. AUBURN UNIVERSITY
Publications

Presentations

3. CENTRAL LUZON STATE UNIVERSITY
Presentations

4. MICHIGAN STATE UNIVERSITY
Publications

Presentations

Other

4. UNIVERSITY OF HAWAII

Publications

Presentation

5. THE UNIVERSITY OF MICHIGAN

Theses

Publications

Presentations

Diana, James. 2007. Use of cages in pond aquaculture to reclaim wastes from intensive feeding of fish. Workshop on Cage Aquaculture in Egypt, Cairo, Egypt, May 2007

Other

6. INSTITUTE OF AGRICULTURE AND ANIMAL SCIENCE

Publications

Presentations

III. GLOBAL ACTIVITIES

1. AUBURN UNIVERSITY

Theses

Publications

Presentations

Lovshin, L. Integrated fish culture systems: Do they work? Presented to faculty and students of the Aquaculture Research Unit, at University of the North, Pietersburg, South Africa, 20 April 1999.

Other

Boyd, C.E. Aquaculture and the environment workshop. Conducted for the Western Australia Fisheries Department, Perth, Australia, 6 May 1999.

Boyd, C.E. Aquaculture pond soils with emphasis on shrimp culture. Soil Science Graduate Seminar, Texas A&M University, Texas, 1997.

Boyd, C.E. Workshop on shrimp pond water quality (2 hr–73 participants), Chantaburi and Surat Thani, Thailand, May 1998.

Boyd, C.E. Workshop on soil management in shrimp ponds (4 days–32 participants), Guayaquil, Ecuador, August 1997.

Boyd, C.E. Workshop on water and soil quality in shrimp farming (2 days-41 participants), Mazatlan, Mexico, January 1998.
Boyd, C.E. Workshop on water quality (1/2 day–25 participants), Pietersburg, South Africa, March 1998.

Boyd, C.E. Workshop on water quality and pond bottom soils (1/2 day–385 participants), four locations, China, August 1997.

Boyd, C.E. Workshop on water quality in shrimp ponds (3 days–22 participants), Guayaquil, Ecuador, November 1997.

2. MICHIGAN STATE UNIVERSITY

Publications

3. OREGON STATE UNIVERSITY

Theses

Publications

Ockeye, S. A fish, oh my, With not one but two eye, Who just ate that fly, Rarely tasty on rye, But basically a good guy.

Presentations

102 31 December 2008

4. SOUTHERN ILLINOIS UNIVERSITY AT CARBONDALE

Publications

5. UNIVERSITY OF ARIZONA

Publications

Presentations

6. UNIVERSITY OF ARKANSAS AT PINE BLUFF
Publications
Presentations

7. UNIVERSITY OF CALIFORNIA, DAVIS

Theses

Publications

Presentations

Other
Piedrahita, R.H. Aquacultural engineering. Five-day course, at the Universidad Autonoma de Baja California, Ensenada, Baja California, 23–28 November 1997.

8. UNIVERSITY OF GEORGIA

Presentations

9. UNIVERSITY OF HAWAII

Presentations

10. UNIVERSITY OF MICHIGAN

Publications

11. UNIVERSITY OF OKLAHOMA

Publications

Presentations

12. UNIVERSITY OF TEXAS

Publications

13. OTHER

Theses
Moreno, Ana GT. 2007. Aplicación de un sistema de calidad para el aprovechamiento del recurso hídrico en una granja de producción acuícola. MS thesis, Centro de Transferencia Tecnológica para la Acuicultura (CETRA), Villahermosa, Mexico

Publications

IV. AQUACULTURE CRSP PUBLICATIONS

A. Notices of Publication & Research Reports

87-1 Hopkins, K.D., J.E. Lannan, and J.R. Bowman. A data base management system for research in pond dynamics.

87-3 Tavarutmaneegul, P. and C.K. Lin. Breeding and rearing of sand goby (Oxyeleotris marmoratus, Blk.) fry.

87-A1 Teichert-Coddington, T. Efectos de Dietas de Proteínas y Densidades de Siembra sobre la Producción de Penaeus vannamei en Estanques de Tierra.
APPENDIX 4. COMPENDIUM OF PUBLICATIONS

88-4 Lin, C.K. Acidification and reclamation of acid sulfate soil fishponds in Thailand.
88-10 Sikoki, F.D., R.A. Tubb, and L.R. Curtis. Elevation of sex steroids and inhibition of UDP-glucuronyltransferase are out of phase during gonadal maturation in the common carp.
88-12 Fortes, R.D., V.L. Corre, Jr., and E. Pudadera. Effects of fertilizers and feeds as nutrient sources on Oreochromis niloticus production in Philippine brackish water ponds.
88-A20 Lin, S.K and M. Boonyaratpalin. An Analysis of Biological Characteristics of Macrobrachium rosenbergii (de Man) in Relation to Pond Production and Marketing in Thailand
89-13 Fast, A.W., K.E. Carpenter, V.J. Estilo, and H.J. Gonzales. Effects of water depth and artificial mixing on dynamics of Philippines brackish water shrimp ponds.
89-16 Lin, C.K. and M. Boonyaratpalin. An analysis of biological characteristics of Macrobrachium rosenbergii (de Man) in relation to pond production and marketing in Thailand.
89-17 Chang, W.Y.B. Estimates of hypolimnetic oxygen deficits in ponds.
89-18 Diana, J.S. and A.W. Fast. The effects of water exchange rate and density on yield of the walking catfish, Clarias fuscus.
89-A1 Alvarenga, H.R and B. W. Green. Produccion y Aspectos Economicos del Cultivo de Tilapia en Estanques Fertilizados con Gallinza
89-A2 Michael J. A. Young, Arlo W. Fast, and Paul G. Olin. Induced Maturation and Spawning of the Chinese Catfish Clarias fuscus
90-24 Hopkins, K.D. Reporting fishpond yields to farmers.
90-27 Green, B.W. and L.A. Lopez. Implementing the large-scale production of young males of Tilapia nilotica using hormonal sex inversion in Honduras.
90-A1 Lannan, J.E. Farming and Ranching in Aquatic Systems
90-A2 Piedrahita, R.H. Detritus-Based Aquaculture Systems
91-30 Green, B.W., D.R. Teichert-Coddington, and R.P. Phelps. Response of tilapia yield and economics to varying rates of organic fertilization and season in two Central American countries.
91-33 Piedrahita, R.H. Calibration and validation of TAP, an aquaculture pond water quality model.
91-34 Piedrahita, R.H. Modeling water quality in aquaculture ecosystems.
91-35 Piedrahita, R.H. Engineering aspects of warmwater hatchery design.
91-36 Piedrahita, R.H. and P. Giovannini. Fertilized non-fed pond systems.
91-38 Green, B.W. and H.R. Alvarenga. The effect of different application rates of chicken litter on tilapia production.
91-A1 Green, B.W. and David R. Teichert-Coddington. Comparison of Two Samplers Used with an Automated Data Acquisition System in Whole-Pond, Community Metabolism Studies
APPENDIX 4. COMPELLIUM OF PUBLICATIONS

91-A5 Piedrahita, R.H. Simulation of Short-Term Management Actions to Prevent Oxygen Depletion in Ponds.
92-40 Szyper, J.P., K.D. Hopkins, and C.K. Lin. Production of Oreochromis niloticus (L.) and ecosystem dynamics in manured ponds of three depths.
92-41 Piedrahita, R.H. Simulation of short-term management actions to prevent oxygen depletion in ponds.
92-46 Green, B.W. Substitution of organic manure for pelleted feed in tilapia production.
92-47 Green, B.W., and D.R. Teichert-Coddington. Comparison of two samplers used with an automated data acquisition system in whole-pond, community metabolism studies.
92-A3 Same as 92-48.
93-49 Teichert-Coddington, D.R., B.W. Green, and R.P. Phelps. Influence of site and season on water quality and tilapia production in Panama and Honduras.
93-50 Suresh, A.V. and C.K. Lin. Tilapia culture in saline waters: a review.
93-51 Knud-Hansen, C.F. Analyzing standard curves in the chemistry of waters used for aquaculture.
93-52 Szyper, J.P., J.Z. Rosenfeld, R.H. Piedrahita, and P. Giovannini. Diel cycles of planktonic respiration rates in briefly incubated water samples from a fertile earthen pond.
93-53 Same as 92-48.
93-54 Lin, C.K., K. Jaiyen, and W. Muthuwana. Integration of intensive and semi-intensive aquaculture: Concept and example.
93-55 Szyper, J.P. and J.M. Ebeling. Photosynthesis and community respiration at three depths during a period of stable phytoplankton stock in a eutrophic brackish water culture pond.

31 December 2008
94-62 Hopkins, K.D. and D. Pauly. Instantaneous mortalities and multivariate models: applications to tilapia culture in saline water.
94-63 Green, B.W. and D.R. Teichert-Coddington. Production of Oreochromis niloticus fry for hormonal sex reversal in relation to water temperature.
94-68 Diana, J.S., D.J. Dettweiler, and C.K. Lin. Effect of Nile tilapia (Oreochromis niloticus) on the ecosystem of aquaculture ponds, and its significance to the trophic cascade hypothesis.
94-71 Hopkins, K.D. Reporting fish growth: a review of the basics.
94-72 Hopkins, K.D. and J.D. Bowman. A research methodology for integrated agriculture-aquaculture farming systems.
94-74 Knud-Hansen, C.F. Pond history as a source of error in fish culture experiments: a quantitative assessment using covariate analysis.
94-75 Green, B.W. and D. Teichert-Coddington. Growth of control and androgen-treated Nile tilapia, Oreochromis niloticus (L.), during treatment, nursery and growout phases in tropical fish ponds.
94-77 Teichert-Coddington, D.R. and B.W. Green. Tilapia yield improvement through maintenance of minimal oxygen concentrations in experimental growout ponds in Honduras.
94-A2 Green, B.W. and D.R. Teichert-Coddington. Growth of Control and Androgen-Treated Nile tilapia, Oreochromis niloticus (L.), During Treatment, Nursery and Grow-Out Phases in Tropical Fish Ponds.
94-A6 No NOP issued for this number.
94-A7 Grace, G.R. and R.H. Piedrahita. Carbon Dioxide Control
<table>
<thead>
<tr>
<th>Publication</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-81</td>
<td>Culberson, S.D. and R.H. Piedrahita. Modification of stratified temperature model to accommodate reduced data inputs: identifying critical requirements.</td>
</tr>
<tr>
<td>95-82</td>
<td>Teichert-Coddington, D.R. Development of production technologies for semi-intensive fish farming during the past decade in Central America.</td>
</tr>
<tr>
<td>95-83</td>
<td>Teichert-Coddington, D.R. Effects of protein diet and sowing density on the production of Penaeus vannamei in land tanks.</td>
</tr>
<tr>
<td>95-85</td>
<td>Egna, H.S. Psychological distress as a factor in environmental impact assessment: some methods and ideas for quantifying this intangible intangible.</td>
</tr>
<tr>
<td>95-A3</td>
<td>Strategies for Stocking Nile Tilapia (Oreochromis niloticus) in fertilized Ponds.</td>
</tr>
<tr>
<td>95-A3</td>
<td>Effects of Pond Depth and Mechanical Mixing on Production of Oreochromis niloticus in Manured Earthen Ponds.</td>
</tr>
<tr>
<td>95-87</td>
<td>Green, B.W. and C.E. Boyd. Water budgets for fish ponds in the dry tropics.</td>
</tr>
<tr>
<td>95-88</td>
<td>Green, B.W. and C.E. Boyd. Chemicals for organically fertilized fish ponds in the dry tropics.</td>
</tr>
<tr>
<td>95-93</td>
<td>Lin, C.K. and J.S. Diana. Co-culture of catfish (Clarias macrocephalus x C. gariepinus) and tilapia (Oreochromis niloticus) in ponds.</td>
</tr>
<tr>
<td>95-94</td>
<td>Lin, C.K. Clarias and tilapia interaction in polyculture.</td>
</tr>
<tr>
<td>95-97</td>
<td>Teichert-Coddington, D.R. Effect of stocking ratio on semi-intensive polyculture of Colossoma macropomum and Oreochromis niloticus in Honduras, Central America.</td>
</tr>
<tr>
<td>97-100</td>
<td>Shrestha, M.K. and C.K Lin. Phosphorus fertilization strategy in fish ponds based on sediment phosphorus saturation level.</td>
</tr>
<tr>
<td>Paper Number</td>
<td>Title</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td>97-102</td>
<td>Green, B.W. Polyculture of tilapia with marine shrimp.</td>
</tr>
<tr>
<td>97-104</td>
<td>Engle, C.R. Optimal resource allocation by fish farmers in Rwanda.</td>
</tr>
<tr>
<td>97-105</td>
<td>Szyper, J.P. Observations and model predictions of daily areal primary production in a eutrophic brackish water culture pond.</td>
</tr>
<tr>
<td>97-106</td>
<td>Szyper, J.P. Comparison of three mixing devices in earthen culture ponds of four different surface areas.</td>
</tr>
<tr>
<td>97-107</td>
<td>Green, B.W. Inclusion of tilapia as a diversification strategy for penaeid shrimp culture.</td>
</tr>
<tr>
<td>97-111</td>
<td>Teichert-Coddington, D. and D. Martinez de Pinel. Solubility of selected inorganic fertilizers in brackish water.</td>
</tr>
<tr>
<td>97-112</td>
<td>Boyd, C.E. Water quality in laboratory soil-water microcosms with soils from different areas of Thailand.</td>
</tr>
<tr>
<td>97-114</td>
<td>Same as 97-101</td>
</tr>
<tr>
<td>97-115</td>
<td>Yi, Y., C.K. Lin, and J.S. Diana. Influence of Nile tilapia (Oreochromis niloticus) stocking density in cages on their growth and yield in cages and in ponds containing the cages.</td>
</tr>
<tr>
<td>97-117</td>
<td>Ward, G.H. Water effluent and quality, with special emphasis on finfish and shrimp aquaculture.</td>
</tr>
<tr>
<td>97-118</td>
<td>Green, B.W., M.P. Micheletti, and C.A. Lara. A collaborative project to monitor the water quality of estuaries in the shrimp producing regions of Honduras.</td>
</tr>
<tr>
<td>97-A2</td>
<td>Egna, H.S. History Of The Pond Dynamics/Aquaculture Collaborative Research Support Program.</td>
</tr>
<tr>
<td>97-A8</td>
<td>Green, B.W., K.L. Veverica, and M.S. Fitzpatrick Fry and Fingerling Production.</td>
</tr>
<tr>
<td>98-121</td>
<td>Contreras-Sánchez, W., M.S. Fitzpatrick, R.H. Milston, and C.B. Schreck. Masculinization of Nile tilapia (Oreochromis niloticus) by single immersion in 17a-methylldihydrotestosterone and trenbolone acetate.</td>
</tr>
</tbody>
</table>
98-128 Yi, Y. A bioenergetics growth model for Nile tilapia (Oreochromis niloticus) based on limiting nutrients and fish standing crop in fertilized ponds.
98-A1 Diana, J.S. and C.K. Lin. The Effects of Fertilization and Water Management on Growth and Production of Nile Tilapia in Deep Ponds During the Dry Season.
99-134 Boyd, C.E. and L. Massaut. Risks associated with the use of chemicals in pond aquaculture.
99-136 Boyd, C.E. and M.C. Haws. Good management practices (GMPs) to reduce environmental impacts and improve efficiency of shrimp aquaculture in Latin America.
99-141 Fitzpatrick, M., W.M. Contreras-Sánchez, R.H. Milston, and C.B. Schreck. Fate of the masculinizing agent methyltestosterone in the pond environment.
99-142 Green, B.W. Sistemas de produccíon de tilapia en Honduras (Tilapia production systems in Honduras).
99-143 Lovshin, L.L. and N.B. Schwartz. Evaluation of integrated tilapia culture by resource limited farmers in Panama and Guatemala.
99-145 Yi, Y. Modeling growth of Nile tilapia (Oreochromis niloticus) in a cage-cum-pond integrated culture system.

00-146 Perschbacher, P. and R. Lochmann. Effects of feeding pelleted versus non-pelleted defatted rice bran on Nile tilapia Oreochromis niloticus production and water quality in ponds.

00-147 Molnar, J.J. Sound policies for food security: the role of culture and social organization.

00-150 Ward, Jr., G.H. Effects of shrimp farming on the hydrography and water quality of El Pedregal and San Bernardo estuaries, Gulf of Fonseca, Honduras.

00-151 Sonnenholzner, S. and C.E. Boyd. Chemical and physical properties of shrimp pond bottom soils in Ecuador.

00-152 Sonnenholzner, S. and C.E. Boyd. Vertical gradients of organic matter concentration and respiration rate in pond bottom soils.

00-154 Ernst, D.H., J.P. Bolte, and S. Nath. AquaFarm: simulation and decision support for aquaculture facility design and management planning.

00-155 Nath, S.S., J.P. Bolte, L.G. Ross, and J. Aguilar-Manjarrez. Applications of geographical information systems (GIS) for spatial decision support in aquaculture.

00-156 Bolivar, R.B. and G.F. Newkirk. Response to selection for body weight on Nile tilapia (Oreochromis niloticus) in different culture environments.

00-157 Lovshin, L.L. Criteria for selecting Nile tilapia and red tilapia for culture.

00-159 Yi, Y. and C.K. Lin. Analysis of various inputs for pond culture of Nile tilapia (Oreochromis niloticus): profitability and potential environmental impacts.

00-161 McKeon, C., E. Glenn, C.P. Gerba, and K. Fitzsimmons. Microbiological hazards of tilapia culture systems.

00-163 Jamu, D. A pilot study on the spatial and temporal soil moisture and distribution in integrated crop-fish-wetland and crop-wetland agroecosystems in Zomba-East, Malawi.

00-164 Lovshin, L.L. Evaluation of tilapia culture by resource limited farmers in Panama and Guatemala.

00-A1 Same as 00-155.

00-A2 Same as 00-154.

00-A4 Phelps, R.P. and T.J. Popma. Sex Reversal of Tilapia

01-165 Contreras-Sánchez, W.M., M.S. Fitzpatrick, R.H. Milston, and C.B. Schreck. Masculinización of Nile tilapia with steroids: alternate treatments and environmental effects.

01-166 Sonnenholzner, S. and C.E. Boyd. Managing the accumulation of organic matter deposited on the bottom of shrimp ponds... Do chemical and biological probiotics really work?

01-167 Egna, H. Environment, aquaculture, and food policy nexus: case study of two USAID aquaculture projects in Rwanda.
01-168 Yi, Y. and C.K. Lin. Effects of biomass of caged Nile tilapia (Oreochromis niloticus) and aeration on the growth and yields in an integrated cage-cum-pond system.

01-170 Same as 00-A3.

01-174 Phelps, R.P. Sex reversal: the directed control of gonadal development in tilapia.

01-A1 Bart, A.N. The Use of Ultrasound to Enhance Transport of Compounds into Fish and Fish Embryos: A Review.

01-A2 Valderrama, D. and C.R. Engle. Efectos en la rentabilidad y las estrategias de manejo de las fincas en Honduras, por las tasas de sobrevivencia del Camarón blanco.

01-A3 Same as 01-168.

01-A4 Same as 01-172.

01-A5 Yang, Y. and C.K. Lin. Low-Cost Fertilization in Inland Pond Aquaculture.

01-A7 Yang, Y. and A. Yakupitiyage. Feeds in Small-Scale Aquaculture.

02-176 Fitzsimmons, K. Tilapia markets in the Americas, 2001 and beyond.

02-181 Tollner, E.W. Levee pond design model.

02-182 Popma, T.J., and D.E. Meyer. Training and technical assistance in warm-water fish culture.

02-A2 Same as 02-185.

03-186 Green, B.W., Z.E. Nagdy, and H. Hebicha. Evaluation of Nile tilapia pond management strategies in Egypt.

03-188 Yi, Y., and C.K. Lin. Hybrid catfish (Clarias macrocephalus x C. gariepinus) and Nile tilapia (Oreochromis niloticus) culture in an integrated pen-cum-pond system: growth performance and nutrient budgets.

03-189 Fúnez, O., I. Neira, and C. Engle. Potential for supermarket outlets for tilapia in Honduras.

03-193 Fúnez, O., I. Neira, and C. Engle. Potential for open-air fish market outlets for tilapia in Honduras.

03-196 Yi, Y. and C. K. Lin. Minimizing environmental impacts and reuse of pond effluents and mud.

03-197 Knud-Hansen, C. and H. Guttman. A comparative analysis of the fixed-input, computer modeling, and algal bioassay approaches for identifying pond fertilization requirements for semi-intensive aquaculture.

03-A1 McIntosh, D. and K. Fitzsimmons. Characterization of Effluent From an Inland, Low-Salinity Shrimp Farm: What Contribution Could This Water Make if Used for Irrigation.

03-A3 Same as 03-196.

03-A4 Same as 03-197.

03-A6 Same as 03-197.

03-A8 Neira, I., C.R. Engle and K. Quagrainie. Potential restaurant markets for farm-raised tilapia in Nicaragua.

04-201 Yi, Y., C.K. Lin, and J.S. Diana. Waste recycling in fish pond culture through integrated culture systems.

04-203 Egna, H.S. and C.E. Boyd. Dynamics of pond aquaculture.

04-A9 Javier de Jesús, M., and C.C. Kohler. The Commercial Fishery of the Peruvian Amazon.
04-A17 Long, N.T. and Y. Yang. Stocking Ratios of Hybrid Catfish (Clarias macrocephalus x C. gariepinus) and Nile Tilapia (Oreochromis Niloticus) in an Intensive Polyculture.
04-A18 Yang, Y. and K. Fitzsimmons. Tilapia-Shrimp Polyculture in Thailand.
05-205 Luong, V.C., Y. Yi, and C.K. Lin. Cove culture of marble goby (Oxyeleotris marmorata Bleeker) and carps in Tri An Reservoir in Vietnam.
05-206 Giap, D.H., Y. Yi, and C.K. Lin. Effects of different fertilization and feeding regimes on the production of integrated farming of rice and prawn Macrobrachium rosenbergii (De Man).
05-A1 Ostaszewska, M., M. Olejniczak, M. Wieczorek, K. Dabrowski, and M.E. Palacios. Growth and morphological changes in the digestive tract of rainbow trout (Oncorhynchus mykiss) and pacu (Piaractus mesopotamicus) due to casein replacement with soybean proteins.

05-A2 Same as 05-205.

05-A4 Boyd, C.E. Water use in aquaculture.

05-A6 Liti, D., L. Cherop, J. Munguti and L. Chhorn. Growth and economic performance of Nile Tilapia (Oreochromis niloticus L.) fed on two formulated diets and two locally available feeds in fertilized ponds.

06-210 Fitzsimmons, K. Prospect and Potential for Global Production.

06-212 Boyd, C.E. Management of Bottom Soil condition and Pond Water and Effluent Quality.

06-213 Fitzsimmons, K. Harvest, Handling, and Processing.

06-214 Engle, C.R. Marketing and Economics.

APPENDIX 4. COMPENDIUM OF PUBLICATIONS

06-A6 Wudtisin, I. and C.E. Boyd. Physical and chemical characteristics of sediments in catfish, freshwater prawn and carp ponds in Thailand

07-220 Cao, L., W. Wang, C. Yang, Y. Yang, J. Diana, A. Yakupitiyage, and D. Li. Application of microbial phytase in fish feed.

07-227 Cao, L., Y. Chengtai, W. Wang, Y. Yang, K. Abbas, B. Yan, H. Wang, L. Su, Y. Sun, and H. Wang. Comparative and evolutionary analysis in natural diploid and tetraploid weather loach Misgurnus anguillicaudatus based on cytochrome b sequence data in central China.

07-228 Cao, L., W. Wang, Y. Yang, C. Yang, S. Xiong, and J.S. Diana. Environmental impact of aquaculture and countermeasures to aquaculture pollution in China.

07-A1 Brown C.L. Microbrewing Science: A Primer on Yeast Culture for Classic Brewing.

07-A4 Tsadik, G.G., and A. N. Bart. Effects of feeding, stocking density and water-flow rate on fecundity, spawning frequency and egg quality of Nile tilapia, Oreochromis niloticus (L.).

Wilfrido M. Contreras-Sanchez and Kevin Fitzsimmons (eds.), Proceedings for the 7th International Symposium on Tilapia in Aquaculture (ISTA7), Vera Cruz, Mexico, 6-8 September 2006, p. 123.

08-231 Dabrowski, K., M. Arslan, J. Rinchard, and M.E. Palacios. Growth, maturation, induced spawning, and production of the first generation of South American Catfish (Pseudoplatystoma sp.) in the North America.

08-233 Rai, S., Y. Yang, M.A Wahab, A. Bart, and J.S. Diana. Comparison of rice straw and bamboo stick substrates in periphyton-based carp polyculture systems.

08-238 Arslan, M. Effects of different dietary lipid sources on the survival, growth and fatty acid composition of South American catfish (Pseudoplatystoma fasciatum), surubim, juveniles.

08-A4 Fitzsimmons, K. Food Safety, Quality Control in Tilapia.
APPENDIX 4. COMPREHENDIUM OF PUBLICATIONS

B. DATA REPORTS BY PD/A CRSP RESEARCHERS

PD/A CRSP, Oregon State University, Corvallis, Oregon, 47 pp.

PD/A CRSP, Oregon State University, Corvallis, Oregon, 94 pp.

Pêcheur des Saumons, M. 2007. Into the agua / to hide in dark silent depths / no dinner tonight.

C. CRSP WORK PLANS

APPENDIX 4. COMPENDIUM OF PUBLICATIONS

D. CRSP ADMINISTRATIVE REPORTS

E. CRSP PROGRAM MANUALS AND PUBLICATIONS

V. OTHER WORK BY CRSP RESEARCHERS

Publications

Niloticus, O. 2007. Were it not for the fact that my daily ablutions require so much energy, my frivolity would be unsurpassed by each of my chums in the sea.

Presentations

APPENDIX 5. LINKAGES

Developing and maintaining links—local, regional, and international—among collaborating universities, government ministries, departments, and agencies, and the private sector forms a significant ancillary contribution to the CRSP research effort and to the goal of meeting food security needs in the developing world. The following list includes informal linkages and connections made by Aquaculture CRSP researchers in the field as well as those maintained by the Program Management Office.

- Acuarios Leticia, Colombia
- Alabama Catfish Producers Association, Montgomery, Alabama
- Alaska State University
- Alpha Aquaculture, Kenya
- American Association for the Advancement of Science (AAAS), Washington, DC
- American Association of State Colleges & Universities
- American Fisheries Society, Bethesda, Maryland
- American Red Cross
- American Tilapia Association, Arlington, Virginia
- Aqua Technics, Carlsborg, Washington
- Aquacorporacion, International, Honduras
- Aquaculture for Local Community Development Programme (ALCOM), Harare, Zimbabwe
- Aquaculture Network for Africa (ANAF)
- Aquaculture Research Unit, University of the North, Peitersburg, South Africa
- Aquaculture without Frontiers
- Asian Development Bank, Tarahara, Nepal
- Asian Institute of Technology, Thailand
- Asociación Nacional de Acuicultores de Honduras (ANDAH), Tegucigalpa, Honduras
- Association for International Agriculture & Rural Development (AIARD), Washington, DC
- Auburn University, Alabama
- Australian Center for International Agricultural Research (ACIAR), Nelson Bay, Australia
- Bangladesh Agricultural University (BAU), Mymensingh, Bangladesh
- Bangladesh Rural Advancement Committee (BRAC), Bangladesh
- Bean/Cowpea CRSP, East Lansing, Michigan
- Bemidji State University, Minnesota
- Board for International Food & Agricultural Development (BIFAD) Washington, DC
- Brackish Water Shrimp Culture Station, Thiland
- Broadening Access & Strengthening Input Market Systems (BASIS) CRSP, Madison, Wisconsin
- Brooklyn College, New York
- Brunell Engineering Works, Kenya
- Bunda College of Agriculture, University of Malawi, Lilongwe, Malawi
- Bureau of Fisheries & Aquatic Resources (BFAR), Manila, Philippines
- Can Tho University, Vietnam
- Canadian International Development Agency (CIDA), Hull, Quebec, Canada
- Caritas, Bangladesh & Iquitos, Peru
- Central Laboratory for Aquaculture Research (CLAR), Abbassa, Egypt
- Centro de Adiestramiento de la Agricultura Sostenible (CEASO), Honduras
- Centro de Investigación en Alimentación y Desarrollo (CIAD)
- Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia
- Chiang Mai Rehabilitation Center, Thailand
- Chulalongkorn University, Bangkok, Thailand
- Clackamas County Extension Office, Oregon City, Oregon
- Clemson University, Clemson, South Carolina
- Coastal Resources Center, University of Rhode Island
- Comité para la Defensa y Desarrollo de la Flora y Fauna del Golfo de Fonseca (CODDEFFAGOLFA) Tegucigalpa, Honduras
- Commonwealth Agricultural Bureau (CABI International), Wageningen, Netherlands
- Comunidad Indígena Sarayaku, Ecuador
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico
- Consejo Nacional del Ambiente (CONAM), Lima, Peru
• Consortium for International Earth Science Information Network (CIESIN), Washington, DC
• Consultative Group on International Agricultural Research (CGIAR), Washington, DC
• Cooperative for Relief & Assistance Everywhere (CARE), Bangladesh, Honduras, Peru, & Atlanta, Georgia
• Cornell University, Ithaca, New York
• CP Group, Thailand
• Cruz Aquaculture Corporation, Philippines
• CSIRO Livestock Industries, Chiswick Pastoral Research Laboratory, Armidale, Australia
• Danish International Development Agency (DANIDA), Copenhagen, Denmark
• Dar es Saalam University, Dar es Saalam, Tanzania
• David & Lucile Packard Foundation
• Department for International Development (DFID) Fish Genetics Research Programme, Swansea University, Wales, UK
• Department of Agriculture, Yunnan Province, China
• Department of Aquaculture, Nepal
• Department of Environmental Management, County of Hawai’i
• Department of Environmental Studies, Kenya
• Department of Fisheries, Ministry of Livestock & Fisheries Development, Kenya
• Department of Fisheries, Phnom Penh, Cambodia
• Department of Fisheries, Udorn Thani, Thailand
• Department of Livestock & Fisheries, Savannakhet, Laos
• Department of Soil Science, University of Nairobi, Kenya
• Derby Holding Company, Kenya
• Development for the Municipality of Centro, Tabasco, Mexico
• Dominion Fish Farm, Kenya
• EcoCostas, Ecuador
• Ecuador USAID-Arcoiris
• Egerton University, Njoro, Kenya
• Ejido Rio Playa, Comalcalco, Tabasco, Mexico
• El Carao National Fish Culture Research Center, Honduras
• EMBRAPA Environment, Brazil
• Empresa Brasileira de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI), Brazil
• Empresa Nacional de Energia Electrica, Tegucigalpa, Honduras
• Escuela Agrícola Panamericana Zamorano, Honduras
• Escuela de Agricultura de la Region Tropical Humeda (EARTH), San José, Costa Rica
• Escuela Superior Politécnica del Litoral (ESPOL)/Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Guayaquil, Ecuador
• European Foundation for the Improvement of Living & Working Conditions, Dublin, Ireland
• European Inland Fisheries Advisory Commission (EIFAC), Rome, Italy
• Extensión Rural de Santa Catarina (Epagri), Brazil
• Farm-Level Applied Research Methods for East & Southern Africa (FARMESA)/ Swedish International Development Cooperation Agency (SIDA)/, Stockholm, Sweden
• Fe y Alegría, Lima, Peru
• Federación de Agroexportadores de Honduras (FPX), San Pedro Sula, Honduras
• Fideicomisos Institutos en Relación con la Agricultura (FIRA), Morelia, Michoacán, Mexico
• Fisheries Department, Ministry of Food & Agriculture, Ghana
• Fisheries Department, Kenya
• Fisheries Industry Technology Center/University of Alaska Kodiak & University of Alaska Fairbanks Sea Grant Marine Advisory Program
• Fisheries Society of Africa (FISA), Nairobi, Kenya
• Florida International University, USA
• Fondo Nacional de Desarrollo Pesquero (FONDEPES), Lima, Peru
• Food & Agriculture Organization of the United Nations (FAO), Italy
• Foreign Agricultural Service, Research & Scientific Exchange Division
• Forum for Organic Resource Management (FORMAT), Nairobi, Kenya
• French Red Cross, France
• Fundación Ecológica Arcoiris, Ecuador
• FYD International, Philippines
• General Directorate of Fisheries & Aquaculture (DIGEPESCA), Tegucigalpa and San Pedro Sula, Honduras
• Genetically Improved Farmed Tilapia Program (GIFT), Muñoz, Nueva Ecija, Philippines
• German Development Service, Kenya
• Global Aquaculture Alliance, St. Louis, Missouri
• Global Livestock CRSP, Davis, California
• Global Village, Honduras
• Global Water Sustainability, Florida
• Growel Formulations Pvt. Ltd, India
• Hainan University, China
• Heifer International, Arkansas
• Henry Spira/GRACE Project on Industrial Production, School of Hygiene & Public Health, Johns Hopkins University
• Hofstra University, USA
• Huazhong Agricultural University, Wuhan, China
• Inland Water Resources & Aquaculture Service (FIRI), Rome, Italy
• Institut Pertanian Bogor (IPB), Bogor, Indonesia
• Institute for Agriculture & Trade Policy, USA
• Institute for Research & Food Development, Mexico
• Institute for the Regional Ecodevelopment of the Amazon, Ecuador
• Institute of Agricultural & Food Information, Prague, Czech Republic
• Institute of Agriculture & Animal Science (IAAS), Tribhuvan University, Rampur Campus, Chitwan, Nepal
• Institution for Research in Food & Development, Hermosillo, Sonora, Mexico
• Instituto Amazónico de Investigaciones Científicas SINCHI, Colombia
• Instituto Colombiano de Desarrollo Rural INCODER, Bogota, Colombia
• Instituto Nacional de Investigaciones Agrícolas, Amazonas, Venezuela
• Instituto de Investigaciones de la Amazonía, Peruana (IIAP), Peru
• Instituto de Investigaciones IMANI, Colombia
• Instituto del Mar del Perú (IMARPE), Peru
• Instituto Nacional de Pesquisas da Amazônia (INPA), Brazil
• Instituto Politécnico Nacional, Mexico
• Instituto Technológico Saleciano, Ecuador
• Instituto Tecnológico de Honduras
• Instituto Tecnológico del Mar, Mexico
• Integrated Pest Management CRSP, USA
• Inter-African Committee on Oceanography, Sea & Inland Fisheries
• International Center for Research in Agroforestry (ICRAF), Nairobi, Kenya
• International Development Research Centre (IDRC), Ottawa, Canada
• International Higher Education Linkages Project (IHELP), Washington, DC
• International Institute for Fisheries Economics & Trade (IIFET), USA
• International Service for National Agricultural Research (ISNAR), Honduras
• International Sorghum & Millet (INTSORMIL) CRSP, Lincoln, Nebraska
• International Symposium on Tilapia in Aquaculture (ISTA)
• Japan International Cooperation Agency (JICA), Japan
• Jomo Kenyatta University, Nairobi, Kenya
• Kasetsart University, Thailand
• Katholieke Universiteit Leuven (KUL), Belgium
• Kellogg Foundation, Dominican Republic
• Kenya Fisheries Department, Kenya
• Kenya Marine & Fisheries Research Institute
• Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
• Kenyatta University, Nairobi, Kenya
• Kibos Fish Farm, Kenya
• Kingolwira National Fish Farming Centre, Tanzania
• Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
• La Fundación Chile, Santiago, Chile
• Ladong Fisheries College, Indonesia
• Lake Basin Development Authority, Kenya
• Lake Victoria Environmental Management Programme, Kenya
• Land Tenure Center, Madison, Wisconsin
• Louisiana State University, Baton Rouge, Louisiana
• Magarini Aquafarmers, Malindi, Kenya
• Malawi National Aquaculture Center, Malawi
• Marine Farms ASA, Norway
• Mekong River Commission, Phnom Penh, Cambodia
• Mercy Corps, Portland, Oregon, USA
• Mesta de Bombon Maca Producers Association, Peru
• Michigan State University
• Microcredit Summit Campaign, Washington, DC
• Ministry of Agricultural Development, Panama
• Ministry of Agriculture, Animal Husbandry, & Fisheries, Entebbe, Uganda
• Ministry of Education, Dominican Republic
• Ministry of Environment & Natural Resources, Tegucigalpa, Honduras
• Ministry of Fisheries, Iquitos, Peru
• Ministry of Tourism, Natural Resources, & Environment, Fisheries & Aquaculture Development Division, Dar es Salaam, Tanzania
• Moi University, Kenya
• Mount Kenya Fish Farmers Association, Central Province, Kenya
• Naivasha Wildlife & Fisheries Training Institute, Kenya
• National Agricultural Library, Washington, DC
• National Agricultural Research Council, Nepal
• National Aquaculture Centre, Zomba, Malawi
• National Center for Genetic Engineering & Biotechnology (BIOTEC), Thailand
• National Council for Science & Technology, Mexico
• National Freshwater Fisheries Technology Center, Philippines
• National Inland Fisheries Institute (NIFI), Bangkok, Thailand
• National Museums of Kenya, Nairobi, Kenya
• National Research Initiative, Thailand
• National Sea Grant College Program
• National Shrimp Culture Advisory Group, Tegucigalpa, Honduras
• National Technical Information Services (NTIS), Springfield, Virginia
• National University of Colombia
• Nature Conservancy’s Indo-Pacific Resource Center in Australia
• Nepal Agricultural Research Council, Lalitpur, Nepal
• Network of Aquaculture Centres in Asia-Pacific (NACA), Bangkok, Thailand
• New York Sea Grant
• Nong Nam University, Vietnam
• Noorul Islam College of Engineering, Tamil Nadu, India
• North Carolina State University, Raleigh, North Carolina
• North Central Regional Aquaculture Center (NCRAC), East Lansing, Michigan
• Nuestros Pequeños Hermanos (NPH), Honduras
• Oceanic Institute, Waimanalo, Hawaii
• Oceanol, Centro, Tabasco, Mexico
• Ohio State University Research Foundation (OSURF), Columbus, Ohio
• Oklahoma State University, USA
• Oregon Aquaculture Association – Pond School, USA
• Oregon Sea Grant, Corvallis, Oregon
• Oregon State University, Oregon
• Organization of African Unity, Addis Ababa, Ethiopia
• Patani Fisheries College, Patani, Thailand
• Peace Corps, Ecuador
• Peanut CRSP, Griffin, Georgia
• Population & Fish Genetics Group
• Programa Cooperativo de Investigacion y Transferencia de Tecnologia Agropecuaria para los Tropicos (PROCITROPICS), Peru
• Programa Regional de Apoyo al Desarrollo de la Pesca en el Istmo Centroamericano (PRADEPESCA), Panama
• Project Globale, Honduras
• Project Rural Reconstruction, Santa Barbara, Honduras
• PROMIPAC, Nicaragua and El Salvador
• PROSEAL, Iquitos, Peru
• PROSHIKA, Dhaka, Bangladesh
• Puerto Rico Sea Grant
• Quisqueya University, Haiti
• Red de Desarrollo Sostenible Honduras (RDS-HN), Honduras
• Regional Center of Education & Quality for Sustainable Development (CREDES), Mazatlan, Mexico
• Research Institute for Aquaculture No. 1, Vietnam
• Roche Aquaculture Research Centre Asia Pacific, Bangkok, Thailand
• Royal Institute of Technology, Stockholm, Sweden
• Royal University of Agriculture, Nepal
• Rural Reconstruction Program (PRR), Honduras
• Sagana Fish Farm, Kenya
• Sagana Women’s Group, Sagana, Kenya
• Sarasawathi Foundation, Thailand
• Science & Math Investigative Learning Experiences Program (SMILE), Oregon State University, USA
• Secretaría de Agricultura e Abastecimiento do Estado de São Paulo, Brazil
• Secretaría de Agricultura y Ganadería, Honduras
• Secretaría Especial de Acuicultura e Pesca, Brazil
• Sichuan Provincial Fisheries Association, Ziyang, Sichuan Province, China
• Sinaloa State Committee for Aquaculture Sanitation (CESASIN)
• Sisaket College of Agriculture & Technology, Thailand
• Socio-Economic Development Centre (SEDEC), Binh Thuan Province, Vietnam
• Soil Management CRSP, Honolulu, Hawaii
• Sokone University of Agriculture, Tanzania
• Southeast Asian Fisheries Development Center (SEAFDEC), Iloilo, Philippines
• Southeast Asian Outreach (SAO)/Cambodia Aquaculture at Low Expenditure (SCALE) Project, Cambodia
• Southern African Development Community (SADC), Harare, Zimbabwe
• Southern Illinois University at Carbondale
• Southwest University, Chongqing, China
• Special Program for African Agricultural Research (SPAAR), Washington, DC
• Stellenbosch University, South Africa
• Sustainable Agricultural Centre for Research & Development in Africa (SACRED-Africa), Bungoma, Kenya
• Sustainable Agriculture & Natural Resources Management (SANREM) CRSP, Watkinsville, Georgia
• Taiwanese Mission, Honduras
• Technical Integration Asia Network, Yangon, Myanmar
• Terra Nuova, Lima, Peru
• Texas A&M University, College Station, Texas
• Texas Sea Grant, Houston, Texas
• Texas Tech University, Lubbock, Texas
• Thai Lux, Thailand
• Thailand Department of Fisheries
• The Ohio State University, Ohio
• The University of Michigan, Michigan
• Training & Occupation for Disabled Association, Poi Pet, Cambodia
• Uganda Wetlands & Resource Conservation Association (UWRCA), Uganda
• Ujong Batee Aquaculture Research & Extension Center, Indonesia
• United Aqua Farms, Bangladesh
• United States Department of Agriculture (USDA), Washington, DC
• United States Fish & Wildlife Service (USFWS), Washington, DC
• United States Food & Drug Administration (FDA), Washington, DC
• Universidad Autónoma del Beni, Bolivia
• Universidad Autónoma de Sinaloa, Mexico
• Universidad Autónoma Metropolitana, Mexico City, Mexico
• Universidad Centroamericana, Nicaragua
• Universidad de Santiago de Compostela, Santiago, Spain
• Universidad Juárez Autónoma de Tabasco, Mexico
• Universidad Mayor de San Simón, Bolivia
• Universidad Nacional Agraria La Molina, Lima, Peru
• Universidad Nacional de Colombia
• Universidad Nacional de la Amazonia Peruana, Peru
• Universidad Nacional Federico Villareal, Lima, Peru
• Universidad Nacional Mayor de San Marcos, Lima, Peru
• Universidad Técnica de Machala, Machala, Ecuador
• Universidade de São Paulo, Brazil
• Universidade Estadual Paulista, Brazil
• Universidade Federal de Minas Gerais, Brazil
• Universidade Federal do Amazonas, Brazil
• Universität Hohenheim, Stuttgart, Germany
• Université Nationale du Rwanda, Butare, Rwanda
• University of Agriculture & Forestry, Vietnam
• University of Alaska, USA
• University of Arizona, USA
• University of Arkansas at Pine Bluff, USA
• University of California–Davis, USA
• University of Delaware, USA
• University of Fisheries, Nhatrang, Vietnam
• University of Georgia, USA
• University of Hawai‘i at Hilo, USA
• University of Nairobi, Kenya
• University of Oklahoma, USA
• University of Puerto Rico, Mayaguez, Puerto Rico
• University of Rhode Island, USA
• University of San Carlos, Guatemala
• University of Stirling, UK
• University of Texas at Austin, USA
• University of the North, Pietersburg, South Africa
• University of the Philippines in the Visayas, Iloilo, Philippines
• University of the Virgin Islands, USVI
• University of Wales, Swansea, UK
• University of Washington, USA
• University of Wisconsin-Madison, USA
• Veracruz World Trade Center
• Vincent Foundation, Haiti
• Virginia Polytechnic Institute & State University, USA
• Wageningen University, Netherlands
• West African Rice Development Association (WARDA), Bouaké, Côte d’Ivoire
• Western Regional Aquaculture Consortium (WRAC), Seattle, Washington
• Wetlands Conservation Program, Mazatlán, Mexico
• Winrock International, Lima, Peru
• World Aquaculture Society (WAS), Baton Rouge, Louisiana
• World Aquaculture Society Tsunami Relief Fund (WAS-TRF)
• World Bank, Washington, DC
• World Conservation Union (IUCN), Nairobi, Kenya
• World Neighbors, Honduras
• World Wildlife Fund, Washington, DC
• WorldFish Center (formerly ICLARM), Penang, Malaysia
• Wuhan University, China
• Xiamen University, China
• YSI, Inc.
• Zamorano Alumni Association, Dominican Republic
• Zhejiang University, China
APPENDIX 6. PROGRAM PARTICIPANTS

MANAGEMENT ENTITY OFFICE STAFF
Oregon State University, Corvallis, Oregon USA
Hillary Egna Director

UNITED STATES AGENCY FOR INTERNATIONAL DEVELOPMENT
Washington, DC USA
Harry Rea Cognizant Technical Officer

ADVISORY BODIES
External Program Advisory Council (membership as of 2008)
Christine Crawford Chair, University of Tasmania, Hobart, Australia
Jason Clay World Wildlife Fund, Washington, DC
Nathanael Hishamunda FAO, Rome, Italy
Marcia Macomber CGIAR Challenge Program on Water & Food, Colombo, Sri Lanka

Ex-Officio Members
Harry Rea USAID
Hillary Egna Oregon State University

Institutional Representatives
Patricia R. Alvarez Florida International University
Roy Arnold Oregon State University
Linda L. Brainard Cornell University
Lawrence A. Davis University of Arkansas at Pine Bluff
Peter J. Gerard University of Michigan
Barbara A. Goswick University of Arkansas at Pine Bluff
Colin Kaltenbach University of Arizona
Ricki McMillan Institute for Agriculture and Trade Policy
Anne J.M. Moffat Ohio State University
C. Michael Moriarty Auburn University
Gordhan L. Patel University of Georgia
Lee Anne T. Peters University of Arizona
Prudence M. Rice Southern Illinois University at Carbondale
Rose Tseng University of Hawaii at Hilo

8 For participant listings within each program year during the 1996–2008 reporting period, see the corresponding Annual Administrative Reports. Listings here cover the period 2007–2008.
2006–2007 Technical Committee Member Co-Chairs (illustrative of the TC roster for one year)
Jim Diana University of Michigan
Claude Boyd Auburn University

Material and Methods Subcommittee Research Area of Expertise
Suyapa Meyer Zamorano Social and economic aspects
Yang Yi Asian Institute of Technology Environmental effects
Kevin Fitzsimmons University of Arizona Production optimization

Technical Progress Subcommittee
Kwamena Quagrainie University of Arkansas Social and economic aspects
Bill Tollner University of Georgia Environmental effects
Maria Haws University of Hawaii Production optimization

Work Plan and Budget Subcommittee
Nancy Gitonga Kenya Department of Fisheries Social and economic aspects
Wilfrido Contreras-Sánchez UJAT Environmental effects
Remedios Bolivar Central Luzon State University Production optimization

Ex-Officio Members
Harry Rea USAID
Hillary Egna Oregon State University
Developing and maintaining linkages among collaborating universities, government, NGOs, and the private sector around the world forms a significant ancillary contribution to the CRSP’s research effort and to the goal of meeting food security needs in the developing world. The following list includes informal linkages and connections made by ACRSP researchers in the field as well as those maintained by the Program Management Office.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAAS</td>
<td>American Association for the Advancement of Science</td>
</tr>
<tr>
<td>ACIAR</td>
<td>Australian Center for International Agricultural Research</td>
</tr>
<tr>
<td>ACRSP</td>
<td>Aquaculture Collaborative Research Support Program</td>
</tr>
<tr>
<td>ADR</td>
<td>Adoption/Diffusion Research</td>
</tr>
<tr>
<td>AFCRSP</td>
<td>Aquaculture & Fisheries Collaborative Research Support Program</td>
</tr>
<tr>
<td>AIARD</td>
<td>Association for International Agriculture & Rural Development</td>
</tr>
<tr>
<td>AIT</td>
<td>Asian Institute of Technology</td>
</tr>
<tr>
<td>ALCOM</td>
<td>Aquaculture for Local Community Development Programme</td>
</tr>
<tr>
<td>AMR</td>
<td>Administrative Management Review</td>
</tr>
<tr>
<td>ANDAH</td>
<td>Asociación Nacional de Acuicultores de Honduras</td>
</tr>
<tr>
<td>AO</td>
<td>Agreement Officer (USAID)</td>
</tr>
<tr>
<td>ASAL</td>
<td>Arid and Semi-Arid Lands Project</td>
</tr>
<tr>
<td>ASF</td>
<td>Animal Source Foods</td>
</tr>
<tr>
<td>ASMR</td>
<td>Aquaculture Systems Modeling Research</td>
</tr>
<tr>
<td>ATA</td>
<td>American Tilapia Association</td>
</tr>
<tr>
<td>ATR</td>
<td>Appropriate Technology Research</td>
</tr>
<tr>
<td>AU</td>
<td>Auburn University</td>
</tr>
<tr>
<td>BASIS</td>
<td>Broadening Access & Strengthening Input Market Systems CRSP</td>
</tr>
<tr>
<td>BAU</td>
<td>Bangladesh Agricultural University</td>
</tr>
<tr>
<td>BIFAD</td>
<td>Board for International Food & Agriculture Development</td>
</tr>
<tr>
<td>BIOTEC</td>
<td>National Center for Genetic Engineering & Biotechnology</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>BOD</td>
<td>Board of Directors</td>
</tr>
<tr>
<td>BRAC</td>
<td>Bangladesh Rural Advancement Committee</td>
</tr>
<tr>
<td>CARE</td>
<td>Cooperative for Relief & Assistance Everywhere</td>
</tr>
<tr>
<td>CAS</td>
<td>College of Agricultural Sciences, OSU</td>
</tr>
<tr>
<td>CEASO</td>
<td>Centro de Adiestamiento de la Agricultura Sostenible</td>
</tr>
<tr>
<td>CENAIM</td>
<td>Centro Nacional de Acuicultura e Investigaciones Marina</td>
</tr>
<tr>
<td>CESASIN</td>
<td>Sinaloa State Committee for Aquaculture Sanitation</td>
</tr>
<tr>
<td>CF</td>
<td>Condition factor</td>
</tr>
<tr>
<td>CFS</td>
<td>China Society of Fisheries</td>
</tr>
<tr>
<td>CGIAR</td>
<td>Consultative Group on International Agricultural Research</td>
</tr>
<tr>
<td>CIAT</td>
<td>Centro Internacional de Agricultura Tropical</td>
</tr>
<tr>
<td>CIDA</td>
<td>Canadian International Development Agency</td>
</tr>
<tr>
<td>CIESIN</td>
<td>Consortium for International Earth Science Information Network</td>
</tr>
<tr>
<td>CIFAD</td>
<td>Consortium for International Fisheries & Aquaculture Development</td>
</tr>
<tr>
<td>CIO</td>
<td>Conflict of Interest</td>
</tr>
<tr>
<td>CLAR</td>
<td>Central Laboratory for Aquaculture Research</td>
</tr>
<tr>
<td>CLSU</td>
<td>Central Luzon State University</td>
</tr>
<tr>
<td>CODDEFFAGOLF</td>
<td>Committee for the Defense & Development of the Flora & Fauna of the Gulf of Fonseca</td>
</tr>
<tr>
<td>CONACYT</td>
<td>Consejo Nacional de Ciencia y Tecnología</td>
</tr>
<tr>
<td>CONAM</td>
<td>Consejo Nacional del Ambiente</td>
</tr>
<tr>
<td>CREDES</td>
<td>Regional Center of Education & Qualification for Sustainable Development</td>
</tr>
</tbody>
</table>
CRSP Collaborative Research Support Program
CSIRO Commonwealth Scientific & Industrial Research Organisation
CTO Cognizant Technical Officer
DANIDA Danish International Development Agency
DBT Database Task Force
DFID Department for International Development, Fish Genetics Research Programme, Swansea University
DIGEPESCA General Directorate of Fisheries & Aquaculture
DO Dissolved oxygen
DOF Department of Fisheries
DTAP Development Themes Advisory Panel(s)
E2 Estradiol
EARTH Escuela de Agricultura de la Region Tropical Humeda
EEP External Evaluation Panel
EGAT Bureau for Economic Growth, Agriculture, & Trade (USAID)
EIFAC European Inland Fisheries Advisory Commission
EIP Emerging Issues Panel
EMBRAPA Empresa Brasileira de Pesquisa Agropecuária
EPAC External Program Advisory Council
ER Effluents & Pollution Research
ESPOL Escuela Superior Politécnica del Litoral
FAO Food & Agriculture Organization, United Nations
FARMESA Farm-Level Applied Research Methods for East & Southern Africa
FDA United States Food & Drug Administration
FFR Feeds & Fertilizers Research
FIRI Inland Water Resources & Aquaculture Service
FISA Fisheries Society of Africa
FIU Florida International University
FONDEPES Fondo Nacional de Desarrollo Pesquero
FORMAT Forum for Organic Resource Management
FPX Federación de Agroexportadores de Honduras
FSR Food Security Research
FTE Full-Time Equivalent
GAFY Gross annualized fish yield
GIFT Genetically Improved Farmed Tilapia
GIS Geographic Information System
GISR GIS: Planning, Policy, & Global Data Analysis Research
HACCP Hazard Analysis & Critical Point Control
HC Host Country
HSI Hepatosomatic index
HTML Hypertext Markup Language
IAAS Institute of Agriculture & Animal Science
IARC International Agricultural Research Center(s)
IATP Institute for Agriculture & Trade Policy
IARC International Agricultural Research Center(s)
ICLARM International Center for Living Aquatic Resources Management (now WorldFish Center)
ICRAF International Center for Research in Agroforestry
IDRC International Development Research Centre
IEE Initial Environmental Examination
IEHA Initiative to End Hunger in Africa
IHELP International Higher Education Linkages Project
IIAP Instituto de Investigaciones de la Amazonia Peruana
IIIFET International Institute for Fisheries Economics & Trade
IGF-1 Insulin-like growth factor 1
IMANI Instituto de Investigaciones, Colombia
IMARPE Instituto del Mar del Perú
APPENDIX 7. ACRONYMS

IMNC Information Management & Networking Component
INCODER Instituto Colombiano de Desarrollo Rural
INPA Instituto Nacional de Pesquisas da Amazonia
INTSORMIL Sorghum, Millet & Other Grains CRSP
IP Institut Pertanian Bogor, Indonesia
IPM Integrated Pest Management
ISTA International Symposium on Tilapia in Aquaculture
IR Institutional Representative(s)
IUCN World Conservation Union
IWMI International Water Management Institute (an IARC)
JCARD Joint Committee on Agricultural Research & Development
JICA Japan International Cooperation Agency
LHRHa Luteinizing hormone-releasing hormone analog
LIFD Low-income food-deficit
LOE Level of Effort
ME Management Entity
MEAR Marketing & Economic Analysis Research
MOU Memorandum of Understanding
MRC Mekong River Commission
MSU Michigan State University
MSY Maximum Sustainable Yield
MT 17α-methyltestosterone
NACA Network of Aquaculture Centres in Asia-Pacific
NAR Net annualized revenue
NARS National Agricultural Research System (of Host Countries)
NASULGC National Association of State Universities & Land-Grant Colleges
NAU National Agriculture University
NB Nota Bene
NCRAC North Central Regional Aquaculture Center
NGO Nongovernmental organization
NIFI National Inland Fisheries Institute
NOAA National Oceanographic & Atmospheric Administration (US)
NPH Nuestros Pequeños Hermanos
NSR New Aquaculture Systems/New Species Research
OhSU The Ohio State University
OSU Oregon State University
OSURF Ohio State University Research Foundation
ACRSP Aquaculture CRSP
PDF Portable Document Format
PDR Pond Dynamics Research
PDVR Product Diversification Research
PI Principal Investigator
PMO Program Management Office
PPEC Proposal Planning Executive Committee
PRADEPESCA Programa Regional de Apoyo al Desarrollo de la Pesca en el Istmo Centroamericano
PROCITROPICS Programa Cooperativo de Investigación y Transferencia de Tecnología Agropecuaria para los Trópicos
PRR Rural Reconstruction Program
PU Purdue University
RCE Regional Center(s) of Excellence
RCR Reproduction Control Research
RDSHN Red de Desarrollo Sostenible Honduras
RFA Request for Assistance
RFP Request for Proposals
ROI Return on investment
SANREM Sustainable Agriculture & Natural Resource Management CRSP
SACRED Sustainable Agricultural Centre for Research & Development in Africa
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>SADC</td>
<td>Southern African Development Community</td>
</tr>
<tr>
<td>SAO</td>
<td>Southeast Asian Outreach</td>
</tr>
<tr>
<td>SEAFDEC</td>
<td>Southeast Asian Fisheries Development Center</td>
</tr>
<tr>
<td>SEDEC</td>
<td>Socio-Economic Development Centre</td>
</tr>
<tr>
<td>SIDA</td>
<td>International Development Cooperation Agency</td>
</tr>
<tr>
<td>SIUC</td>
<td>Southern Illinois University at Carbondale</td>
</tr>
<tr>
<td>SINCHI</td>
<td>Instituto Amazónico de Investigaciones Científicas</td>
</tr>
<tr>
<td>SMILE</td>
<td>Science & Math Investigative Learning Experiences Program</td>
</tr>
<tr>
<td>SPAAR</td>
<td>Special Program for African Agricultural Research</td>
</tr>
<tr>
<td>SPARE</td>
<td>Strategic Partnership for Agricultural Research & Education</td>
</tr>
<tr>
<td>SRP</td>
<td>Soluble reactive phosphorus</td>
</tr>
<tr>
<td>TA</td>
<td>Technical Application</td>
</tr>
<tr>
<td>TA</td>
<td>Trenbolone acetate</td>
</tr>
<tr>
<td>TAN</td>
<td>Total ammonia nitrogen</td>
</tr>
<tr>
<td>TC</td>
<td>Technical Committee</td>
</tr>
<tr>
<td>TIPS</td>
<td>Tilapia Integration to Prawn Culture System</td>
</tr>
<tr>
<td>TN</td>
<td>Total nitrogen</td>
</tr>
<tr>
<td>TP</td>
<td>Total phosphorus</td>
</tr>
<tr>
<td>TS</td>
<td>Total solids</td>
</tr>
<tr>
<td>TSP</td>
<td>Triple superphosphate</td>
</tr>
<tr>
<td>TSS</td>
<td>Total suspended solids</td>
</tr>
<tr>
<td>UA</td>
<td>University of Arizona</td>
</tr>
<tr>
<td>UAPB</td>
<td>University of Arkansas at Pine Bluff</td>
</tr>
<tr>
<td>UCD</td>
<td>University of California, Davis</td>
</tr>
<tr>
<td>UG</td>
<td>University of Georgia</td>
</tr>
<tr>
<td>UH</td>
<td>University of Hawaii</td>
</tr>
<tr>
<td>UJAT</td>
<td>Universidad Juárez Autónoma de Tabasco</td>
</tr>
<tr>
<td>UM</td>
<td>The University of Michigan</td>
</tr>
<tr>
<td>UO</td>
<td>University of Oklahoma</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USAID</td>
<td>United States Agency for International Development</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>USFWS</td>
<td>United States Fish & Wildlife Service</td>
</tr>
<tr>
<td>USVI</td>
<td>University of the Virgin Islands, St. Thomas</td>
</tr>
<tr>
<td>UT</td>
<td>University of Texas</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UWRCA</td>
<td>Uganda Wetlands & Resource Conservation Association</td>
</tr>
<tr>
<td>YSS</td>
<td>Volatile suspended solids</td>
</tr>
<tr>
<td>WARDA</td>
<td>West African Rice Development Association</td>
</tr>
<tr>
<td>WAS</td>
<td>World Aquaculture Society</td>
</tr>
<tr>
<td>WIDeST</td>
<td>Web-Based Information Delivery System for Tilapia</td>
</tr>
<tr>
<td>WRAC</td>
<td>Western Regional Aquaculture Consortium</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wildlife Fund</td>
</tr>
<tr>
<td>YSI</td>
<td>YSI Inc.</td>
</tr>
</tbody>
</table>